WJNSE  Vol.1 No.4 , December 2011
A Highly Efficient and Stable Visible-Light Plasmonic Photocatalyst Ag-AgCl/CeO2
Abstract: Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a novel plasmonic photocatalyst Ag-AgCl/CeO2 was prepared with a facile route. The as-prepared samples were characterized using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffusion re?ection spectroscopy. This metal-semiconductor nanocomposite plasmonic photocatalyst exhibited a high visible-light photocatalytic activity and good stability for photocatalytic degradation of methyl orange in water. Ag-AgCl/CeO2 will be a potentially promising plasmonic photocatalysts for organic pollutant degradation and water purification.
Cite this paper: nullH. Wang, L. Yang, H. Yu and F. Peng, "A Highly Efficient and Stable Visible-Light Plasmonic Photocatalyst Ag-AgCl/CeO2," World Journal of Nano Science and Engineering, Vol. 1 No. 4, 2011, pp. 129-136. doi: 10.4236/wjnse.2011.14019.

[1]   A. Fujishima and K. Honda, “Electrochemical Photocatalysis of Water at a Semiconductor Electrode,” Nature, Vol. 238, No. 5358, 1972, pp. 37-38.

[2]   B. Ohtani, R. M. Bowman, D. P. Colombo, H. Kominami, H. Noguchi and K. Uosaki, “Femtosecond Diffuse Reflectance Spectroscopy of Aqueous Titanium(IV) Oxide Suspension: Correlation of Electron-Hole Recombination Kinetics with Photocatalytic Activity,” Chemistry Letters, Vol. 27, No. 7, 1998, pp. 579-580. doi:10.1246/cl.1998.579

[3]   S. Ikeda, N. Sugiyama, B. Pal, G. Marci, L. Palmisano, H. Noguchi, et al., “Photocatalytic Activity of Transition-Metal-Loaded Titanium(IV) Oxide Powders Suspended in Aqueous Solutions: Correlation with Electron-Hole Recombination Kinetics,” Physical Chemistry Chemistry Physics, Vol. 3, No. 2, 2001, pp. 267-273. doi:10.1039/b008028o

[4]   A. Fujishima, X. T. Zhang and D. A. Tryk, “TiO2 Photocatalysis and Related Surface Phenomena,” Surface Science Reports, Vol. 63, No. 12, 2008, pp. 515-582. doi:10.1016/j.surfrep.2008.10.001

[5]   T. W. Kim, S. J. Hwang, S. H. Jhung, J. S. Chang, H. Park, W. Choi, et al., “Bifunctional Heterogeneous Catalysts for Selective Epoxidation and Visible Light Driven Photolysis: Nickel Oxide-Containing Porous Nanocomposite,” Advanced Materials, Vol. 20, No. 3, 2008, pp. 539-542. doi:10.1002/adma.200701677

[6]   J. Li, W. H. Ma, Y. P. Huang, X. Tao, J. C. Zhao and Y. M. Xu, “Oxidative Degradation of Organic Pollutants Utilizing Molecular Oxygen and Visible Light over a Supported Catalyst of Fe(bpy)2+3 in Water,” Applied Catalysis B: Environmental, Vol. 48, No. 1, 2004, pp. 17-24. doi:10.1016/j.apcatb.2003.09.003

[7]   J. C. Zhao, C. C. Chen and W. H. Ma, “Photocatalytic Degradation of Organic Pollutants under Visible Light Irradiation,” Topics in Catalysis, Vol. 35, No. 3-4, 2005, pp. 269-278. doi:10.1007/s11244-005-3834-0

[8]   M. D. Hernandez-Alonso, F. Fresno, S. Suarez and J. M. Coronado, “Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities,” Energy & Environmental Science, Vol. 2, No. 12, 2009, pp. 1231-1257. doi:10.1039/b907933e

[9]   P. F. Ji, J. L. Zhang, F. Chen and M. Anpo, “Study of Adsorption and Degradation of Acid Orange 7 on the Surface of CeO2 under Visible Light Irradiation,” Applied Catalysis B: Environmental, Vol. 85, No. 3-4, 2009, pp. 148- 154. doi:10.1016/j.apcatb.2008.07.004

[10]   G. R. Bamwenda, K. Sayama and H. Arakawa, “The Photoproduction of O2 from a Suspension Containing CeO2 and Ce4+ Cations as an Electron Acceptor,” Chemistry Letters, Vol. 28, No. 10, 1999, pp. 1047-1048. doi:10.1246/cl.1999.1047

[11]   Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos, “Active Nonmetallic Au and Pt Species on Ceria Based Water Gas Shift Catalysts,” Science, Vol. 301, No. 5635, 2003, pp. 935-938. doi:10.1126/science.1085721

[12]   E. Perry Murray, T. Tsai and S. A. Barnett, “A Direct-Methane Fuel Cell with Ceria-Based Anode,” Nature, Vol. 400, No. 6745, 1999, pp. 649-651. doi:10.1038/23220

[13]   A. Corma, P. Atienzar, H. Garcia and J. Y. Chane-Ching, “Hierarchically Mesostructured Doped CeO2 with Potential for Solar-Cell Use,” Nature Materials, Vol. 3, No. 6, 2004, pp. 394-397. doi:10.1038/nmat1129

[14]   V. Subramanian, E. Wolf and P. V. Kamat, “Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films,” Journal of Physical Chemistry B, Vol. 105, No. 46, 2001, pp. 11439-11446. doi:10.1021/jp011118k

[15]   M. Miyauchi, A. Nakajima, T. Watanabe and K. Hashimoto, “Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films,” Chemistry of Materials, Vol. 14, No. 6, 2002, pp. 2812-2816. doi:10.1021/cm020076p

[16]   L. B. Khalil, W. E. Mourad and M. W. Rophael, “Photocatalytic Reduction of Environmental Pollutant Cr(VI) over some Semiconductors under UV/Visible Light Illumination,” Applied Catalysis B: Environmental, Vol. 17, No. 3, 1998, pp. 267-273. doi:10.1016/S0926-3373(98)00020-4

[17]   J. G. Yu, G. P. Dai and B. B. Huang, “Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 TiO2 Nanotube Arrays,” Journal of Physical Chemistry C, Vol. 113, No. 37, 2009, pp. 16394-16401. doi:10.1021/jp905247j

[18]   K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, et al., “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide,” Jouranl of the American Chemical Society, Vol. 130, No. 5, 2008, pp. 1676-1680. doi:10.1021/ja076503n

[19]   X. Chen, H. Y. Zhu, J. C. Zhao, Z. T. Zheng and X. P. Gao, “Visible-Light-Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports,” Angewandte Chemie (International Edition), Vol. 47, No. 29, 2008, pp. 5353-5356. doi:10.1002/anie.200800602

[20]   S. M. Sun, W. Z. Wang, L. Zhang, M. Shang and L. Wang, “Ag@C Core/Shell Nanocomposite as a Highly Efficient Plasmonic Photocatalyst,” Catalysis Communications, Vol. 11, No. 4, 2009, pp. 290-293. doi:10.1016/j.catcom.2009.09.026

[21]   S. Rodrigues, S. Uma, I. N. Martyanov and K. J. Klabunde, “AgBr/Al-MCM-41 Visible-Light Photocatalyst for Gas-Phase Decomposition of CH3CHO,” Journal of Catalysis, Vol. 233, No.2, 2005, pp. 405-410. doi:10.1016/j.jcat.2005.05.011

[22]   P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, et al., “Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light,” Angewandte Chemie (International Edition), Vol. 47, No. 41, 2008, pp. 7931-7933. doi:10.1002/anie.200802483

[23]   P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, H. Jin, Y. Dai, et al., “Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr,” Chemistry—A European Journal, Vol. 15, No. 8, 2009, pp. 1821-1824. doi:10.1002/chem.200802327

[24]   P. Wang, B. B. Huang, Q. Q. Zhang, X. Y. Zhang, X. Y. Qin, Y. Dai, et al, “Highly Efficient Visible Light Plasmonic Photocatalyst Ag@Ag(Br,I),” Chemistry—A European Journal, Vol. 16, No. 33, 2010, pp. 10042-10047. doi: 10.1002/chem.200903361

[25]   P. Wang, B. B. Huang, Z. Z. Lou, X. Y. Zhang, X. Y. Qin, Y. Dai, et al, “Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures,” Chemistry—A European Journal, Vol. 16, No. 2, 2010, pp. 538-544. doi:10.1002/chem.200901954

[26]   Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles,” Jouranl of the American Chemical Society, Vol. 127, No. 20, 2005, pp. 7632- 7637. doi:10.1021/ja042192u

[27]   X. F. Zhou, C. Hu, X. X. Hu, T. W. Peng and J. H. Qu, “Plasmon-Assisted Degradation of Toxic Pollutants with Ag-AgBr/Al2O3 under Visible-Light Irradiation,” Journal of Physical Chemistry C, Vol. 114, No. 6, 2010, pp. 2746-2750. doi:10.1021/jp909697k

[28]   C. Hu, T. W. Peng, X. X. Hu, Y. L. Nie, X. F. Zhou, J. H. Qu, et al, “Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-AgI/Al2O3 under Visible-Light Irradiation,” Jouranl of the American Chemical Society, Vol. 132, No. 2, 2010, pp. 857-862. doi:10.1021/ja907792d

[29]   C. Hu, Y. Q. Lan, J. H. Qu, X. X. Hu and A. M. Wang, “Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria,” Journal of Physical Chemistry B, Vol. 110, No. 9, 2006, pp. 4066-4072. doi:10.1021/jp0564400

[30]   C. Ping, L. Wei, T. L. Zhou, Y. P. Jin and M. Y. Gu, “Physical and Photocatalytic Properties of Zinc Ferrite Doped Titania under Visible Light Irradiation,” Journal of Photo-chemistry and Photobiology A: Chemistry, Vol. 168, No. 1-2, 2004, pp. 97-101. doi:10.1016/j.jphotochem.2004.05.018

[31]   J. F. Hamilton, “Physical Properties of Silver Halide Microcrystals,” Photographic Science and Engineering, Vol. 18, No. 5, 1974, pp. 493-500.

[32]   S. Glaus and G. Calzaferri, “The Band Structures of the Silver Halides AgF, AgCl, and AgBr: a Comparative Study,” Photochemical & Photobiological Sciences, Vol. 2, No. 4, 2003, pp. 398-401. doi:10.1039/b211678b

[33]   F. B. Li, X. Z. Li, M. F. Hou, K. W. Cheah and W. C. H. Choy, “Enhanced Photocatalytic Activity of Ce3+-TiO2 for 2-Mercaptobenzothiazole Degradation in Aqueous Suspension for Odour Control,” Applied Catalysis A: General, Vol. 285, No. 1-2, 2005, pp. 181-189. doi:10.1016/j.apcata.2005.02.025