Back
 JWARP  Vol.11 No.2 , February 2019
Modeling and Optimization of Two Clays Acidic Activation for Phosphate Ions Removal in Aqueous Solution by Response Surface Methodology
Abstract: This work deals with phosphate ions removal in aqueous solution by adsorption carried out using two clays, both in activated form. One, non-swelling clay, rich in kaolinite, is associated with illite and quartz. The other, swelling, richer in montmorillonite, is associated with kaolinite, illite and quartz. Seven factors including these two clays were taken into account in a series of experimental designs in order to model and optimize the acidic activation process favoring a better phosphate removal. In addition to the choice of clay nature, the study was also interested in the identification of the mineral acid, between hydrochloric acid and sulfuric acid, which would promote this acidic activation. Response Surface Methodology (RSM) was used for this purpose by sequentially applying Plackett and Burman Design and Full Factorial Design (FD) for screening. Then, a central composite design (CCD) was used for modeling the activation process. A mathematical surface model has been successfully established. Thus, the best acidic activation conditions were obtained by activating the montmorillonite clay with a 2N sulfuric acid solution, in an acid/clay mass ratio of 7.5 at 100°C for 16H. The phosphate removal maximum rate obtained was estimated at 89.32% ± 0.86%.
Cite this paper: Adjoumani, Y. , Dablé, P. , Kouassi, K. , Gueu, S. , Assémian, A. and Yao, K. (2019) Modeling and Optimization of Two Clays Acidic Activation for Phosphate Ions Removal in Aqueous Solution by Response Surface Methodology. Journal of Water Resource and Protection, 11, 200-216. doi: 10.4236/jwarp.2019.112012.
References

[1]   Eltelib, H.A., Hamad, M.A. and Ali, E.E. (2006) The Effect of Nitrogen and Phosphorus Fertilization on Growth, Yield and Quality of Forage Maize (Zea mays L.). Journal of Agronomy, 5, 515-518.
https://doi.org/10.3923/ja.2006.515.518

[2]   FAO (1984) Fertilizer and Plant Nutrition Guide. FAO Fertilizer and Plant Nutrition Bulletin No. 9, Rome.

[3]   Black, C.A. (1968) Soil-Plant Relationships. John Wiley and Sons, Inc., New York.

[4]   Barroin, G. (2003) Gestion des risques, santé et environnement: Le cas des nitrates, phosphore, azote et prolifération des végétaux aquatiques. Assises internationales envirobio 13-14/11/2000 Paris Le Courrier de l’Environnement (48).
http://www7.inra.fr/dpenv/barroc48.htm

[5]   Pitois, S., Jackson, M. and Wood, B. (2001) Sources of the Eutrophication Problems Associated with Toxic Algae: An Overview. Journal of Environmental Health, 64, 25-32.

[6]   Kalff, J. (2002) Limnology. Land Water Ecosystems. Prentice Hall, Upper Saddle River, NJ.
https://trove.nla.gov.au/version/40255631

[7]   Chambers, P.A., Kent, R., Charlton, M.N., Guy, M., Gagnon, C., Roberts, E., Grove, E., and Foster, N. (2001) Les éléments nutritifs et leurs effets sur l’environnement au Canada. Environment Canada, Ottawa (Ont.).
http://publications.gc.ca/pub?id=9.640297&sl=1

[8]   UN WATER (2017) The United Nations World Water Development Report 2017. Wastewater—The Untapped Resource.
http://creativecommons.org/licenses/by-sa/3.0/igo/

[9]   Rejsek, F. (2002) Analyse des eaux: Aspects réglementaires et techniques. Centre régional de documentation pédagogique (CRDP) d’Aquitaine. Coll. Biologie technique. Sciences et techniques de l’environnement.

[10]   Zran, E., Yao, B., Trokourey, A., Yobouet, A. and Drogui, P. (2015) An Optimized Pathway for Phosphate Ions Removal from Aqueous Solution Based on Experimental Design Methodology. International Journal of Environmental Science and Technology, 12, 3117-3124.
https://doi.org/10.1007/s13762-014-0738-1

[11]   Moletta, R. (2002) Gestion des problèmes environnementaux dans les industries agroalimentaires. FRA, Paris. Lavoisier Tec et Doc.
https://prodinra.inra.fr/record/68168

[12]   Mahmud, H., Huq, A.O. and Binti, Y.R. (2016) The Removal of Heavy Metal Ions from Wastewater Aqueous Solution Using Polypyrrole-Based Adsorbents. RSC Advances, 6, 14778-14791.
https://doi.org/10.1039/C5RA24358K

[13]   Bennani, K.A., Mounir, B., Hachkar, M., Bakasse, M. and Yaacoubi A. (2015) Adsorption of Cationic Dyes onto Moroccan Clay: Application for Industrial Wastewater Treatment. Journal of Materials and Environmental Science, 6, 2483-2500.

[14]   Zhang, T., Ding, L., Ren, H., Guo, Z. and Tan, J. (2010) Thermodynamic Modeling of Ferric Phosphate Precipitation for Phosphorus Removal and Recovery from Wastewater. Journal of Hazardous Materials, 176, 444-450.
https://doi.org/10.1016/j.jhazmat.2009.11.049

[15]   Zheng, Y. and Wang, A. (2009) Evaluation of Ammonium Removal Using a Chitosan-g-poly (Acrylic Acid)/Rectorite Hydrogel Composite. Journal of Hazardous Materials, 171, 671-677.
https://doi.org/10.1016/j.jhazmat.2009.06.053

[16]   Mokaya, R. and Jones, W. (1995) Pillared Clays and Pillared Acid-Activated Clays: A Comparative Study of Physical, Acidic Properties. Journal of Catalysis, 153, 76-85.
https://doi.org/10.1006/jcat.1995.1109

[17]   Novakovic, T., Rozic, L. and Petrovic, S. (2008) Synthesis and Characterization of Acid-Activated Serbian Smectite Clays Obtained by Statistically Designed Experiments. Chemical Engineering Journal, 137, 436-442.
https://doi.org/10.1016/j.cej.2007.06.003

[18]   Gannouni, A., Bellagi, A. and Bagane, M. (1999) Préparation d’une argile activée pour la décoloration de l’huile d’olive. Annales de Chimie Science des Matériaux, 24, 407-416.
https://doi.org/10.1016/S0151-9107(99)80085-3

[19]   Tyagi, B., Chudasama, C.D. and Jasra, R.V. (2006) Determination of Structural Modification in Acid Activated Montmorillonite Clay by FT-IR Spectroscopy, Spectrochim. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 273-278.
https://doi.org/10.1016/j.saa.2005.07.018

[20]   Arfaoui, S., Frini-srasra, N. and Srasra, E. (2008) Modelling of the Adsorption of the Chromium Ion by Modified Clays. Desalination, 222, 474-481.
https://doi.org/10.1016/j.desal.2007.03.014

[21]   Ye, J., Cong, X., Zhang, P., Zeng, G., Hoffmann, E., Liu, Y., Wu, Y., Zhang, H., Fang, W. and Hahn, H.H. (2016) Application of Acid-Activated Bauxsol for Wastewater Treatment with High Phosphate Concentration: Characterization, Adsorption Optimization, and Desorption Behaviors. Journal of Environmental Management, 167, 1-7.
https://doi.org/10.1016/j.jenvman.2015.11.023

[22]   Wang, Y., He, H., Zhang, N., Shimizu, K. and Lei, Z. (2018) Efficient Capture of Phosphate from Aqueous Solution Using Acid Activated Akadama Clay and Mechanisms Analysis. Water Science & Technology, 78, 1603-1614.

[23]   Kpangni, E.B., Andji, Y.Y.J., Adouby, K., Oyetola, S., Kra, G. and Yvon, J. (2008) Mineralogy of Clayraw Materials from Côte d’Ivoire: Case of the Deposit from Katiola. Journal of Applied Sciences, 8, 871-875.
https://doi.org/10.3923/jas.2008.871.875

[24]   Emeruwa, E., Kouadio, K.C., Kouakou, C.H., Boffoue, O.M., Assande, A.A., Ouattara, S., Coulibaly, Y., Dauscher, A. and Lenoir, B. (2008) Caractérisation des argiles de la région d’Abidjan: Etude comparée de quelques gites et leur perspective de valorisation. Journal Ivoirien des Sciences et Technologie, 11, 177-192.

[25]   Holtzapffel, T. (1985) Les mineraux argileux: Preparation, analyse diffractometrique et determination. Annales de la Société géologique du Nord, 12, 15-43.

[26]   Dablé, P.J.M.R., Adjoumani, Y.J., Yao, B. and Ado, G. (2008) Wastewater Dephosphorization Using Crude Clays. International Journal of Environmental Science and Technology, 5, 35-42.

[27]   AFNOR (1994) Essais des Eaux. Dosage des phosphates, des polyphosphates et du phosphore total (méthode spectrométrique). Qualité de l’eau. Association Française de normalisation, Paris, 356-361.

[28]   Goupy, J. (2006) Les plans d’expériences. Revue Modulad, 34, 74-116.
http://www.modulad.fr/archives/numero-34/Goupy-34/goupy-34.pdf

[29]   Box, G.E.P. and Draper, N.R. (1987) Empirical Model-Building and Response Surfaces. John Wiley & Sons, New York.

[30]   Tinsson, W. (2010) Plans d’experience: Constructions et analyses statistiques. Springer, Berlin.

[31]   Plackett, R.L. and Burmann, J.P. (1943) Design of Optimum Multifactorial Experiments. Biometrika, 33, 305-325.

[32]   Feinberg, M. (1996) La validation des méthodes d’analyse: Une approche chimiométrique de l’assurance qualité au laboratoire.

[33]   Mathieu, D., Nony, J. and Phan-Tan-Luu, R. (1998) New Efficient Methodology for Research Using Optimal Design (NEMROD) Software.

[34]   Bailly, P. and Carrère, C. (2015) Statistiques descriptives. L’économie et les chiffres Presses universitaires de Grenoble, coll. Libres cours économie.

[35]   Scibilia, B. (2018) Régression multiple: Quand utiliser le R2 ajusté ou le R2 prévu?
http://www.minitab.com/fr-fr/Published-Articles/Regression-multiple-R2-ajuste-R2-prevu/

[36]   Baudot, J.Y. (2018) Le coefficient de détermination.
http://www.jybaudot.fr/Correl_regress/coeffdeterm.html

[37]   Lambert, A., Drogui, P., Daghrir, R., Zaviska, F. and Benzaazoua, M. (2014) Removal of Copper in Leachate from Mining Residues Using Electrochemical Technology. Journal of Environmental Management, 133, 78-85.
https://doi.org/10.1016/j.jenvman.2013.11.036

[38]   Joglekar, A.M. and May, A.T. (1987) Product Excellence through Design of Experiments. Cereal Foods World, 32, 857-868.

[39]   Mundra, P., Desai, K. and Lele, S.S. (2007) Application of Response Surface Methodology to Cell Immobilization for the Production of Palatinose. Bioresource Technology, 98, 2892-2896.
https://doi.org/10.1016/j.biortech.2006.09.046

[40]   Neji, S.B., Trabelsi, M. and Frikha, M.H. (2009) Activation d’une argile smectite tunisienne à l’acide sulfurique: Rôle catalytique de l’acide adsorbé par l’argile. Journal de la Société Chimique de Tunisie, 11, 191-203.
http://www.sctunisie.org/pdf/JSCT_v11-24.pdf

[41]   Nguetnkam, J.P., Kamga, R., Villiéras, F., Ekodeck, G.E., Raza, A. and Yvon, J. (2011) Alteration of Cameroonian Clays under Acid Treatment. Comparison with Industrial Adsorbents. Applied Clay Science, 52, 122-132.
https://doi.org/10.1016/j.clay.2011.02.009

[42]   Srasra, E., Bergaya, F., Van Damme, H. and Ariguib, N.K. (1989) Surface Properties of an Activated Bentonite—Decolorisation of Rape-Seed Oils. Applied Clay Science, 4, 411-421.
https://doi.org/10.1016/0169-1317(89)90019-7

[43]   Christidis, G.E., Scott, P.W. and Dunham, A.C. (1997) Acid Activation and Bleaching Capacity of Bentonites from the Islands of Milos and Chios, Aegean, Greece. Applied Clay Science, 12, 329-347.
https://doi.org/10.1016/S0169-1317(97)00017-3

[44]   Haffane, S., Achak, O. and Chafik, T. (2016) Investigation of the Effect of Purification and Modification of a Local Clay on Its Structural and Textural Properties. Journal of Materials and Environmental Science, 7, 525-530.

[45]   Khoek, S.C. and Lim, E.E. (1982) Mechanism of Palm Oil Bleaching by Montmorillonite Clay Activated at Various Acid Concentrations. Journal of the American Oil Chemists’ Society, 59, 129-131.
https://doi.org/10.1007/BF02662259

[46]   Pushpaletha, P., Rugmini, S. and Lalithambika, M. (2005) Correlation between Surface Properties and Catalytic Activity of Clay Catalysts. Applied Clay Science, 30, 141-153.
https://doi.org/10.1016/j.clay.2005.03.011

[47]   Kara, M., Yuzer, H., Sabah, E. and. Celik, M.S. (2003) Adsorption of Cobalt from Aqueous Solutions onto Sepiolite. Water Research, 7, 224-232.
https://doi.org/10.1016/S0043-1354(02)00265-8

[48]   Belibi Belibi, P., Nguemtchouin, M.M.G., Rivallin, M., NdiNsami, J., Sieliechi, J., Cerneaux, S., Ngassoum, M.B. and Cretin, M. (2015) Microfiltration Ceramic Membranes from Local Cameroonian Clay Applicable to Water Treatment. Ceramics International, 41, 2752-2759.
https://doi.org/10.1016/j.ceramint.2014.10.090

[49]   Jahouach, W. (2009) Etude Des propriétés physico-chimiques des huiles d’olive et de grignon décolorés par des argiles tunisiennes activées aux ondes ultrsonores. PhD Dissertation, Université de Sfax, Tunisie.

[50]   Adjia, Z.H. (2012) Adsorption des métaux lourds par les argiles alluviales de l’extrême-nord Cameroun. PhD Dissertation, co-supervised Université de Lorraine (France) and Université de N’Gaoundéré (Cameroun).

[51]   Wey, R. (1955) Sur l’adsorption en milieu acide d’ions H2PO4- par la montmorillonite. Bulletin du Groupe français des Argiles, 6, 31-34.
http://www.persee.fr/doc/argil_0429-3320_1955_num_6_1_1259
https://doi.org/10.3406/argil.1955.1259


[52]   Garcia, C. and Parigot, P. (1968) Boues et forage (Les).

[53]   Boudjema, S. (2015) Synthèse de polyoxométalates à base de vanaduim et/ou de ruthénium. Application de l’époxydation du cyclohexéne, PhD Dissertation, Université de Tlemcen, Algérie.

 
 
Top