Back
 ENG  Vol.11 No.1 , January 2019
Effects of the Form Factor and the Force of the Gravity on the Thermal Exchanges by Natural Convection in a Rectangular Cavity Filled with Nanofluid
Abstract: Effects of the form factor on natural convection heat transfer and fluid flow in a two-dimensional cavity filled with Al2O3-nanofluid has been analyzed numerically. A model was developed to explain the behavior of nanofluids taking account of the volume fraction φ. The Navier-Stokes equations are solved numerically by alternating an implicit method (Method ADI) for various Rayleigh numbers varies as 103, 104 and 105. The nanofluid used is aluminum oxide with water Pr = 6.2; solid volume fraction φ is varied as 0%, 5% and 10%. Inclination angle Φ varies from 0° to 90° with a step the 15° and the form report varies as R = 0.25, 0.5, 1 and 4. The problem considered is a two-dimensional heat transfer enclosure. The vertical walls are differentially heated; the right is cold when the left is hot. The horizontal walls are assumed to be insulated. The nanofluid in the cavity is considered as incompressible, Newtonian and laminar flow. The nanoparticles are assumed to have a shape and a uniform size. However, it is supposed that the two fluid phases and nanoparticles are in a state of thermal equilibrium and they sink at the same speed. The thermophysical properties of nanofluids are assumed to be constant at the exception of the variation of density in the force of buoyancy, which is based on the approximation of Boussinesq values.
Cite this paper: Eljamali, L. , Wakif, A. , Boulahia, Z. , Zaydan, M. and Sehaqui, R. (2019) Effects of the Form Factor and the Force of the Gravity on the Thermal Exchanges by Natural Convection in a Rectangular Cavity Filled with Nanofluid. Engineering, 11, 59-73. doi: 10.4236/eng.2019.111006.
References

[1]   Baïri, A., Laraqi, N. and García de María, J. (2007) Numerical and Experimental Study of Natural Convection in Tilted Parallelepipedic Cavities for Large Rayleigh Numbers. Experimental Thermal and Fluid Science, 31, 309-324.

[2]   Oztop, H.F. and Abu-Nada, E. (2008) Numerical Study of Natural Convection in Partially Heated Rectangular Enclosure Filled with Nanofluids. International Journal of Heat and Fluid Flow, 29, 1326-1336.
https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009

[3]   Tiwari, R.K. and Das, K. (2007) Heat Transfer Increase in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids. International Journal of Heat and Mass Transfer, 50, 2002-2018.
https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034

[4]   Choi, S. (1995) American Society of Mechanical Engineers. Developments and Applications of Non-Newtonian Flows EDF, 231, 99-105.

[5]   Khanafer, K., Vafai, K. and Lightstone, M. (2003) Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids. International Journal of Heat and Mass Transfer, 46, 3639-3653.
https://doi.org/10.1016/S0017-9310(03)00156-X

[6]   de Vahl Davis, G. (1960) Laminar Natural Convection in an Enclosed Rectangular Cavity. International Journal of Heat and Mass Transfer, 111, 1675-1693.

[7]   de Vahl Davis, G. (1983) Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution. International Journal for Numerical Methods in Fluids, 3, 249-264.
https://doi.org/10.1002/fld.1650030305

[8]   Zaydan, M., Yadil, N., Boulahia, Z., Wakif, A. and Sehaqui, R. (2016) Compact Fourth-Order Formulation for the Resolution of Heat Transfer in Natural convection of Water-Cu Nanofluid in a Square Cavity with a Sinusoidal Thermal Boundary condition. World Journal of Nano Science and Engineering, 6, Article ID: 67550.
https://doi.org/10.4236/wjnse.2016.62009

[9]   Markatos, N.C. and Pericleous, K. (1984) Laminar and Turbulent Natural Convection in an Enclosed Cavity. International Journal of Heat and Mass Transfer, 27, 755-772.
https://doi.org/10.1016/0017-9310(84)90145-5

[10]   Jou, R.-Y. and Tzeng, S.-C. (2006) Numerical Research of Nature Convective Heat Transfer Enhancement Filled with Nanofluids in Rectangular Enclosures. International Communications in Heat and Mass Transfer, 33, 727-736.
https://doi.org/10.1016/j.icheatmasstransfer.2006.02.016

[11]   Barakos, G., Mitsoulis, E. and Assimacopoulos, D. (1994) Natural Convection Flow in a Square Cavity Revisited: Laminar and Turbulent Models with Wall Functions. International Journal for Numerical Methods in Fluids, 18, 695-719.
https://doi.org/10.1002/fld.1650180705

[12]   Elsherbiny, S. (1996) Free Convection in Inclined Air Layers Heated from Above. International Journal of Heat and Mass Transfer, 39, 3925-3930.
https://doi.org/10.1016/0017-9310(96)00047-6

 
 
Top