Back
 OJCM  Vol.9 No.1 , January 2019
Electronic Transport in Alloys with Phase Separation (Composites)
Abstract: A measure for the efficiency of a thermoelectric material is the figure of merit defined by ZT = S2T/ρκ, where S, ρ and κ are the electronic transport coefficients, Seebeck coefficient, electrical resistivity and thermal conductiviy, respectively. T is the absolute temperature. Large values for ZT have been realized in nanostructured materials such as superlattices, quantum dots, nanocomposites, and nanowires. In order to achieve further progress, (1) a fundamental understanding of the carrier transport in nanocomposites is necessary, and (2) effective experimental methods for designing, producing and measuring new material compositions with nanocomposite-structures are to be applied. During the last decades, a series of formulas has been derived for calculation of the electronic transport coefficients in composites and disordered alloys. Along the way, some puzzling phenomenons have been solved as why there are simple metals with positive thermopower? and what is the reason for the phenomenon of the Giant Hall effect”? and what is the reason for the fact that amorphous composites can exist at all? In the present review article, (1), formulas will be presented for calculation of σ = (1/ρ), κ, S, and R in composites. R, the Hall coefficient, provides additional informations about the type of the dominant electronic carriers and their densities. It will be shown that these formulas can also be applied successfully for calculation of S, ρ, κ and R in nanocomposites if certain conditions are taken into account. Regarding point (2) we shall show that the combinatorial development of materials can provide unfeasible results if applied noncritically.
Cite this paper: Sonntag, J. , Lenoir, B. and Ziolkowski, P. (2019) Electronic Transport in Alloys with Phase Separation (Composites). Open Journal of Composite Materials, 9, 21-56. doi: 10.4236/ojcm.2019.91002.
References

[1]   Minnich, A.J., Dresselhaus, M.S., Ren, Z.F. and Chen, G. (2009) Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects. Energy & Environmental Science, 2, 466-479.

[2]   Edwards, A.M., Fairbanks, M.C., Singh, A., Newport, R.J. and Gurman, S.J. (1989) An Investigation of the Structure of Amorphous Si1-xNix through the Metal-Insulator Transition. Physica B, 158, 600-601.
https://doi.org/10.1016/0921-4526(89)90402-X

[3]   Edwards, A.M., Fairbanks, M.C. and Newport, R.J. (1991) Structural Studies of Amorphous Ge-Au Alloys. Philosophical Magazine B, 63, 457.
https://doi.org/10.1080/13642819108205950

[4]   Lorentz, R.D., Bienenstock, A. and Morrison, T.I. (1994) Structural Studies of the Phase Separation of Amorphous FexGe 100-x Alloys. Physical Review B, 49, 3172.
https://doi.org/10.1103/PhysRevB.49.3172

[5]   Regan, M.J., Rice, M., FernandezvanRaap, M.B. and Bienenstock, A. (1994) Anisotropic Phase Separation through the Metal-Insulator Transition in Amorphous Alloys. Physical Review Letters, 73, 1118.
https://doi.org/10.1103/PhysRevLett.73.1118

[6]   van Raap, M.B.F., Regan, M.J. and Bienenstock, A. (1995) Evidence of Phase Separation in Amorphous FexSi1-x Films. Journal of Non-Crystalline Solids, 191, 155-163.
https://doi.org/10.1016/0022-3093(95)00286-3

[7]   Odelevskii, V.I. (1951) Raschet obobshchennoy provodimosti geterogennykh system. Zhurnal tekhnicheskoy fiziki, 21, 678.

[8]   Landauer, R. (1952) The Electrical Resistance of Binary Metallic Mixtures. Journal of Applied Physics, 23, 779.
https://doi.org/10.1063/1.1702301

[9]   Harman, T.C. and Honig, J.M. (1967) Thermoelectric and Thermomagnetic Effects and Applications. McGraw-Hill Book Company, New York, San Francisco, Toronto, London, Sydney.

[10]   Barnard, R.D. (1972) Thermoelectricity in Metals and Alloys. Taylor and Francis, London.

[11]   Sonntag, J. (2006) Disordered Electronic Systems. III. Thermoelectric Power in Alloys with Phase Separation. Physical Review B, 73, Article ID: 045126.
https://doi.org/10.1103/PhysRevB.73.045126

[12]   Sonntag, J. (2009) Thermoelectric Power in Alloys with Phase Separation (Composites). Journal of Physics: Condensed Matter, 21, Article ID: 175703.
https://doi.org/10.1088/0953-8984/21/17/175703

[13]   Czycholl, G. (2008) Theoretische Festkorperphysik. Springer Verlag, Berlin, Heidelberg.

[14]   Kirejew, P.S. (1974) Physik der Halbleiter. Akademie-Verlag, Berlin.

[15]   Kirejew, P.S. (1978) Semiconductor Physics. Mir Publishers, Moscow.

[16]   Sonntag, J. (2016) The Origin of the Giant Hall Effect in Metal-Insulator Composites. Open Journal of Composite Materials, 6, 78-90.

[17]   Airapetiants, C.V. (1957) Thermal Electromotive Force and Additional Thermal Conductivity of Statistical Mixtures. Soviet Physics Uspekhi, 2, 429.

[18]   Webman, I., Jortner, J. and Cohen, M.H. (1977) Thermoelectric Power in Inhomogeneous Materials. Physical Review B, 6, 2959-2964.
https://doi.org/10.1103/PhysRevB.16.2959

[19]   Halpern, V. (1983) The Thermopower of Binary Mixtures. Journal of Physics C: Solid State Physics, 16, L217-L220.
https://doi.org/10.1088/0022-3719/16/7/002

[20]   Balagurov, B.Y. (1986) Theory of Thermoelectric Properties of Two-Component Media. Soviet Physics Uspekhi, 20, 805.

[21]   Bergman, D.J. and Levy, O. (1991) Thermoelectric Properties of a Composite Medium. Journal of Applied Physics, 70, 6821-6833.
https://doi.org/10.1063/1.349830

[22]   Hurvits, G., Rosenbaum, R. and Mclachlan, D.S.J. (1993) A Quantitative Analysis of the Thermoelectric Power Measurements on Composite Al-Ge Films. Journal of Applied Physics, 73, 7441.
https://doi.org/10.1063/1.353987

[23]   Hurvits, G., Rosenbaum, R. and Mclachlan, D.S. (1994) A Quantitative Analysis of the Thermoelectric Power Measurements on Composite Al-Ge Films. Physica A, 207, 391-395.
https://doi.org/10.1016/0378-4371(94)90401-4

[24]   Herring, C. (1960) Effect of Random Inhomogeneities on Electrical and Galvanomagnetic Measurements. Journal of Applied Physics, 31, 1939-1953.
https://doi.org/10.1063/1.1735477

[25]   Fishchuk, I. (1990) Thermomagnetic Properties of Randomly Inhomogeneous Solid-State Systems in Weak Magnetic Fields. Soviet Physics, Solid State, 32, 2053.

[26]   Xia, T.K. and Zeng, X.C. (1987) The Effective-Medium Approximation for the Thermoelectric Power of Polycrystals: Application to a Model for La2-xMxCuO4. Journal of Physics C: Solid State Physics, 20, L907.
https://doi.org/10.1088/0022-3719/20/32/006

[27]   Cohen, M.H. and Jortner, J. (1973) Effective Medium Theory for the Hall Effect in Disordered Materials. Physical Review Letters, 30, 696-698.
https://doi.org/10.1103/PhysRevLett.30.696

[28]   Cohen, M.H. and Jortner, J. (1974) The Inhomogeneous Transport Regime and Metalnonmetal Transitions in Disordered Material. Journal de Physique, 35, C4-345-C4-366.

[29]   Vaney, J.-B., Piarristeguy, A., Ohorodniichuck, V., Ferry, O., Pradel, A., Alleno, E., Monnier, J., Lopes, E.B., Goncalves, A.P., Delaizir, G., et al. (2015) Effective Medium Theory Based Modeling of the Thermoelectric Properties of Composites: Comparison between Predictions and Experiments in the Glass-Crystal Composite System Si10As15Te75-Bi0.4Sb1.6Te3. Journal of Materials Chemistry C, 3, Article ID: 11090.
https://doi.org/10.1039/C5TC02087E

[30]   McLachlan, D.S. (1987) An Equation for the Conductivity of Binary Mixtures with Anisotropic Grain Structures. Journal of Physics C: Solid State Physics, 20, 865.

[31]   McLachlan, D.S., Blaszkiewicz, M. and Newnham, R.E. (1990) Electrical Resistivity of Composites. Journal of the American Ceramic Society, 73, 2187-2203.

[32]   Sonntag, J. (1989) Disordered Electronic Systems: Concentration Dependence of the DC Conductivity in Amorphous Transition-Metal-Metalloid Alloys (Metallic Regime). Physical Review B, 40, 3661-3671.
https://doi.org/10.1103/PhysRevB.40.3661

[33]   Sonntag, J. (2005) Disordered Electronic Systems. II. Phase Separation and the Metal-Insulator Transition in Metal-Metalloid Alloys. Physical Review B, 71, Article ID: 115114.
https://doi.org/10.1103/PhysRevB.71.115114

[34]   Ziman, J.M. (1974) Prinzipien der Festkorpertheorie. Akademie Verlag, Berlin.

[35]   Ziman, J.M. (1967) Electrons and Phonons. The Theory of Transport Phenomena in Solids. Clarendon Press, Oxford.

[36]   Smith, C., Janak, J.F. and Adler, B. (1967) Electronic Conduction in Solids. McGraw-Hill Book Company, New York.

[37]   Wilson, A.H. (1965) The Theory of Metals. Cambridge University Press, Cambridge.

[38]   Sonntag, J. (2010) The Effect of the Band Edges on the Seebeck Coefficient. Journal of Physics: Condensed Matter, 22, Article ID: 235501.
https://doi.org/10.1088/0953-8984/22/23/235501

[39]   Helms, H., Patz, W., Friedemann, C. and Grotzschel, R. (1984) Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt (Chemnitz; Germany), 26, 660.

[40]   Zhang, X.X., Liu, H. and Pakhomov, A.B. (2000) Observation of Giant Hall Effect in Non-Magnetic Cermets. Physica B, 279, 81-83.
https://doi.org/10.1016/S0921-4526(99)00674-2

[41]   Savvides, N., Alister, S.P., Hurd, C.M. and Shiozaki, I. (1982) Localization in the Metallica Regime of Granular Cu-SiO2 Films. Solid State Communications, 42, 143-145.
https://doi.org/10.1016/0038-1098(82)90370-2

[42]   Pakhomov, A.B., Yan, X. and Zhao, B. (1995) Giant Hall Effect in Percolating Ferromagnetic Granular Metal-Insulator Films. Applied Physics Letters, 67, 3497-3499.
https://doi.org/10.1063/1.115259

[43]   Yoshizumi, S., Mael, D., Geballe, T.H. and Greene, R.L. (1985) The Metal-Insulator Transition and Superconductivity in Amorphous Molybdenum-Germanium Alloys. In: Fritzsche, H. and Adler, D., Eds., Localization and Metal-Insulator Transitions, Plenum Press, New York, 77-87.
https://doi.org/10.1007/978-1-4613-2517-8_7

[44]   Mael, D., Yoshizumi, S. and Geballe, T.H. (1986) Specific Heat of Amorphous MoxGe1-x through the Metal-Insulator Transition. Physical Review B, 34, 467-470.
https://doi.org/10.1103/PhysRevB.34.467

[45]   Rogatchev, A.Y., Takeuchi, T. and Mizutani, U. (2000) Comparison of the Specific Heat and the Conductivity of Amorphous TixSi100-x Alloys across the Metal-Insulator Transition. Physical Review B, 61, 10010-10014.
https://doi.org/10.1103/PhysRevB.61.10010

[46]   Abkemeier, K.M., Adkins, C.J., Asal, R. and Davis, E.A. (1992) Conductivity and Magnetoresistance of Hydrogenated Amorphous Silicon-Nickel Alloys near the Metal-Insulator Transition. Journal of Physics: Condensed Matter, 4, 9113.
https://doi.org/10.1088/0953-8984/4/46/017

[47]   Abkemeier, K.M., Adkins, C.J., Asal, R. and Davis, E.A. (1992) Hopping Conduction in Hydrogenated Amorphous Si1-yNiy. Philosophical Magazine B, 65, 675-679.
https://doi.org/10.1080/13642819208204902

[48]   Schulze, G.E.R. (1967) Metallphysik. Akademie-Verlag, Berlin.

[49]   Xiong, P., Xiao, G., Wang, J.Q., Xiao, J.Q., Jiang, J.S. and Chien, C.L. (1992) Extraordinary Hall Effect and Giant Magnetoresistance in the Granular Co-Ag System. Physical Review Letters, 69, 3220-3223.
https://doi.org/10.1103/PhysRevLett.69.3220

[50]   Masumoto, T. and Maddin, T. (1975) Structural Stability and Mechanical Properties of Amorphous Metals. Materials Science and Engineering, 19, 1-24.

[51]   Pakhomov, A.B., Yan, X., Wang, N., Jing, X.N., Zhao, B., Fung, K.K., Xhie, J., Hung, T.F. and Wong, S.K. (1997) On the Origin of the Giant Hall Effect in Magnetic Granular Metals. Physica A, 241, 344-349.
https://doi.org/10.1016/S0378-4371(97)00105-2

[52]   Wan, C. and Sheng, P. (2002) Quantum Interference and the Giant Hall Effect in Percolating Systems. Physical Review B, 66, Article No. 075309.

[53]   Zhang, X.X., Wan, C., Liu, H., Li, Z.Q., Sheng, P. and Lin, J.J. (2001) Giant Hall Effect in Nonmagnetic Granular Metal Films. Physical Review Letters, 86, 5562-5565.
https://doi.org/10.1103/PhysRevLett.86.5562

[54]   Liu, H., Zheng, R.K., Wen, G.H. and Zhang, X.X. (2004) Giant Hall Effect in Metal/Insulator Composite Films. Vacuum, 73, 603-610.
https://doi.org/10.1016/j.vacuum.2003.12.076

[55]   Wen, J.F., Wang, J.F., Zou, W.Q., Zhang, F.M. and Du, Y.W. (2005) Investigation on the Giant Hall Effect of (FexSn100-x)1-y (SiO2)y Granular Films. Journal of Alloys and Compounds, 393, 77-80.
https://doi.org/10.1016/j.jallcom.2004.10.021

[56]   Atkins, P.W. and dePaula, J. (2006) Physikalische Chemie. WILEY-VCH Verlag, Weinheim.

[57]   Atkins, P.W. and de Paula, J. (2006) Physical Chemistry. Oxford University Press, Oxford.

[58]   Joffe, A.F. (1958) Physik der Halbleiter. Akademie-Verlag, Berlin.

[59]   Ricker, T. and Schaumann, G. (1966) Thermoelektrische Eigenschaften reiner Metalle in der Umgebung der Schmelztemperatur. Phys. Kondens. Mater, 5, 31.

[60]   Howe, R.A. and Enderby, J.E. (1967) The Thermoelectric Power of Liquid Ag-Au. Philosophical Magazine, 16, 467-476.
https://doi.org/10.1080/14786436708220857

[61]   Kendall, P.W. (1968) The Absolute Thermoelectric Powers of the Liquid Alkali Metals. Physics and Chemistry of Liquids, 1, 33-48.
https://doi.org/10.1080/00319106808083785

[62]   Sonntag, J., Ziolkowski, P., Savan, A., Kieschnick, M. and Ludwig, A. (2011) High-Throughput Characterization of the Seebeck Coefficient of a-(Cr1-xSix)1-yOy Thin Film Materials Libraries as Verification of the Extended Thermopower Formula. Journal of Physics: Condensed Matter, 23, Article ID: 265501.
https://doi.org/10.1088/0953-8984/23/26/265501

[63]   Sonntag, J., Ziolkowski, P., Savan, A., Kieschnick, M. and Ludwig, A. (2012) Unpublished.

[64]   Ziolkowski, P., Karpinski, G., Platzek, D., Stiewe, C. and Muller, E. (2006) Application Overview of the Potential Seebeck Microscope. 25th International Conference on Thermoelectrics, Vienna, 6-10 August 2006, 684-688.
https://doi.org/10.1109/ICT.2006.331234

[65]   Platzek, D., Karpinski, G., Stiewe, C., Ziolkowski, P., Stordeur, M., Engers, B. and Muller, E. (2005) Spatial Resolution of the Seebeck Coefficient Measured on Thermoelectric Thin Films. 3rd European Conference on Thermoelectrics, Nancy, 1-2 September 2005, 119-122.

 
 
Top