JAMP  Vol.7 No.1 , January 2019
Investigation on Pressure Drop of Fluid-Solid Mixture Flow through Pipes Using CFD and SK Model
Abstract: The carrier fluid (air or water) is used to transport solid material from the source place to its destination point through pipeline. Using air as carrier fluid to transport solid material through pipeline is called Pneumo transport, whereas transporting material with water or any other liquid through pipeline is called as hydraulic transport. A large number of installations are now available globally to transport solid materials to short, medium, and long distances using water/air as carrier fluid. However, the design of such system of pipeline is still an empirical art. In the present investigation, one generalized mathematical model developed by Shrivastava and Kar (SK Model) and CFD models were used and compared with experimental results for pneumatic and hydraulic transport of granular solids. The motivation of present work is to find the accuracy of SK model based on analytical, empirical and semi-empirical for the prediction of pressure drop and comparing the result with CFD based on mathematical equation for the mixture flow in the horizontal and vertical pipe lines. The comparison of pressure drop results obtained by using SK model and CFD model were validated with the experimental results for pneumatic and hydraulic transport of solids through. From the comparison results, it was observed that the results of pressure drop predicted by SK model are more accurate than the CFD models for all the cases considered.
Cite this paper: Jothi, M. , Haimanot, R. and Kumar, U. (2019) Investigation on Pressure Drop of Fluid-Solid Mixture Flow through Pipes Using CFD and SK Model. Journal of Applied Mathematics and Physics, 7, 218-232. doi: 10.4236/jamp.2019.71018.

[1]   Wilson, K.C., Addie, G.R., Sellgren, A. and Clift, R. (2005) Slurry Transport Using Centrifugal Pumps. 3rd Edition, Springer, Boston.

[2]   Shrivastava, K.K. (2005) Determination of Optimum Particle Size for Economical Hydrotransport. ASME 2005 Fluids Engineering Division Summer Meeting, Volume 1, Paper No. FEDSM2005-77065, Texas, 19-23 June 2005, 913-918.

[3]   Mills, D. (2003) Pneumatic Conveying Design Guide. 2nd Edition, Elsevier, Butterworth-Heinemann, London.

[4]   Ofei, T.N. and Ismail, A.Y. Eulerian-Eulerian Simulation of Particle Liquid Slurry Flow in Horizontal Pipe. Journal of Petroleum Engineering, 2, Article ID: 5743471.

[5]   Kelessidis, V.C., Bandelis, G.E. and Li, J. (2007) Flow of Dilute Solid-Liquid Mixtures in Horizontal Concentric and Eccentric Annuli. Journal of Canadian Petroleum Technology, 46.

[6]   Nabil, T., El Sawaf, I. and El Nahhas, K. (2013) Computational Fluid Dynamics Simulation of the Solid-Liquid Slurry Flow in a Pipeline. Proceedings of the 17th International Water Technology Conference, Istanbul.

[7]   Shrivastava, K.K. and Kar, S. (1993) General Analytical Relation for Pressure Drop for Hydro and Pneumotransport of Solids in Vertical, Horizonta Land, Inclined Pipelines. ASME 5th International Fluid Engineering Conferences on Gas-Particle Flows, Vancouver.

[8]   Saha, A.K., Srivastava, D., Panigrahi, R. and Muralidhar, P.K. (2014) Fluid Mechanics and Fluid Power-Contemporary Research. Proceedings of the 42nd National and 5th International Conference on Fluid Mechanics and Fluid Power, IIT, Kanpur.

[9]   Gopaliya, M.K. and Kaushal, D.R. (2016) Modeling of Sand-Water Slurry Flow through Horizontal Pipe Using CFD. Journal of Hydrology and Hydromechanics, 64, 261-272.

[10]   Bartosik, A.S. and Shook, C.A. (1995) Modelling Bagnold Stress Effects in Vertical Slurry Flow with Coarse Particles. Proceedings of the 8th International Conference on Transport and Sedimentation of Particles, Prague, 6.

[11]   (2017) Manual of MAA Garment and Textile, Guidelines of Measurements and Control. Mekelle-Quiha: S.N.

[12]   Tsuji, Y. and Morikawa, Y. (1982) YLDV Measurements of an Air-Solid Two Phase Flow in Horizontal Pipe. International Journal of Heat and Fluid Flow, 120, 385-409.

[13]   Shrivastava, K.K. (2002) Pneumotransport of Grains through a Pipeline. ASME Fluids Engineering Division, 6.

[14]   Krampa, F.N., Morlu1, J.D., Bugg, D.J., et al. (2006) Frictional Pressure Drop Calculation for Liquid-Solid. Syncrude Research Centre.

[15]   Nabil, T., El-Sawaf, I. and El-Nahhas, K. (2014) Sand-Water Slurry Flow Modelling in a Horizontal Pipeline by Computational Fluid Dynamics Technique. International Water Technology Journal, 4.

[16]   Bartosik, A.S. and Shook, C.A. (1994) Particle-Wall Stresses in Vertical Slurry Flows. International Journal of Powder Technology, 81, 117-124.

[17]   Patro, P. and Dash, S.K. (2014) Numerical Simulation for Hydrodynamic Analysis and Pressure Drop Prediction in Horizontal Gas-Solid Flows. International Journal of Particulate Science and Technology, 32, 94-103.

[18]   Eulerian, B.P. (2014) Modelling of Gas-Solid Multi-Phase Flow in Horizontal Pipes. ME Thesis, Mechanical Engineering Department, National Institute of Technology, Rourkela.