Back
 AiM  Vol.9 No.1 , January 2019
Evaluation of Surface Roughness and Streptococcus mutans Adhesion to Bulk-Fill Resin Composites Polished with Different Systems
Abstract: Purpose: Bacterial adhesion represents the initial step in biofilm formation, dental caries and decay. This study aimed to evaluate and compare surface roughness and bacterial adhesion to bulk fill resin composites polished with different systems. Methods: Filtek Z350 XT (Incremental-fill resin composite), Filtek Bulk-fill Posterior (Bulk-fill resin composite), and Tetric N Ceram (Bulk-fill resin composite) were used as resin composites. The polishing systems used in this study were Sof-Lex multi-step, PoGo one step, and Mylar strip. Scanning electron microscope (SEM) was used to examine the surface roughness and adhesion of Streptococcus mutans ATCC 25175 standard strain to bulk-fill resin composites. Results: The type of restorative materials did not affect the surface roughness or bacterial adhesion (p > 0.05) but the polishing systems were significant (p < 0.05) influencing factors. Furthermore, Pearson correlation revealed a statistically significant (p < 0.001) association (R = 0.943) between surface roughness and bacterial adhesion to the tested surfaces. Conclusion: Regardless of the restorative material, Mylar polishing system revealed the smoothest surface and the lowest adhesion of S. mutans as compared to Pogo one step and Sof-Lex multi-step polishing systems.
Cite this paper: Soliman, W. , Ali, A. , Elkhatib, W. (2019) Evaluation of Surface Roughness and Streptococcus mutans Adhesion to Bulk-Fill Resin Composites Polished with Different Systems. Advances in Microbiology, 9, 87-101. doi: 10.4236/aim.2019.91007.
References

[1]   Filoche, S., Wong, L. and Sissons, C. (2010) Oral Biofilms: Emerging Concepts in Microbial Ecology. Journal of Dental Research, 89, 8-18.
https://doi.org/10.1177/0022034509351812

[2]   Ono, M., Nikaido, T., Ikeda, M., Imai, S., Hanada, N., Tagami, J., et al. (2007) Surface Properties of Resin Composite Materials Relative to Biofilm Formation. Dental Materials Journal, 26, 613-622.
https://doi.org/10.4012/dmj.26.613

[3]   Hojo, K., Nagaoka, S., Ohshima, T. and Maeda, N. (2009) Bacterial Interactions in Dental Biofilm Development. Journal of Dental Research, 88, 982-990.
https://doi.org/10.1177/0022034509346811

[4]   Teughels, W., Van Assche, N., Sliepen, I. and Quirynen, M. (2006) Effect of Material Characteristics and/or Surface Topography on Biofilm Development. Clinical Oral Implants Research, 17, 68-81.
https://doi.org/10.1111/j.1600-0501.2006.01353.x

[5]   Subramani, K., Jung, R.E., Molenberg, A. and Hämmerle, C.H. (2009) Biofilm on Dental Implants: A Review of the Literature. International Journal of Oral & Maxillofacial Implants, 24, 616-626.

[6]   Lutz, F., Krejci, I. and Barbakow, F. (1991) Quality and Durability of Marginal Adaptation in Bonded Composite Restorations. Dental Materials, 7, 107-113.
https://doi.org/10.1016/0109-5641(91)90055-4

[7]   Dauvillier, B.S., Aarnts, M.P. and Feilzer, A.J. (2000) Developments in Shrinkage Control of Adhesive Restoratives. Journal of Esthetic and Restorative Dentistry, 12, 291-299.
https://doi.org/10.1111/j.1708-8240.2000.tb00238.x

[8]   Versluis, A., Douglas, W., Cross, M. and Sakaguchi, R. (1996) Does an Incremental Filling Technique Reduce Polymerization Shrinkage Stresses? Journal of Dental Research, 75, 871-878.
https://doi.org/10.1177/00220345960750030301

[9]   Kwon, Y., Ferracane, J. and Lee, I.-B. (2012) Effect of Layering Methods, Composite Type, and Flowable Liner on the Polymerization Shrinkage Stress of Light Cured Composites. Dental Materials, 2, 801-809.
https://doi.org/10.1016/j.dental.2012.04.028

[10]   Tjan, A.H., Bergh, B.H. and Lidner, C. (1992) Effect of Various Incremental Techniques on the Marginal Adaptation of Class II Composite Resin Restorations. Journal of Prosthetic Dentistry, 67, 62-66.
https://doi.org/10.1016/0022-3913(92)90051-B

[11]   Czasch, P. and Ilie, N. (2013) In Vitro Comparison of Mechanical Properties and Degree of Cure of Bulk Fill Composites. Clinical Oral Investigations, 17, 227-235.
https://doi.org/10.1007/s00784-012-0702-8

[12]   Bollenl, C.M., Lambrechts, P. and Quirynen, M. (1997) Comparison of Surface Roughness of Oral Hard Materials to the Threshold Surface Roughness for Bacterial Plaque Retention: A Review of the Literature. Dental Materials, 13, 258-269.
https://doi.org/10.1016/S0109-5641(97)80038-3

[13]   Cilli, R., de Mattos, M.C.R., Honorio, H.M., Rios, D., de Araujo, P.A. and Prakki, A. (2009) The Role of Surface Sealants in the Roughness of Composites after a Simulated Toothbrushing Test. Journal of Dentistry, 37, 970-977.
https://doi.org/10.1016/j.jdent.2009.08.002

[14]   Bürgers, R., Cariaga, T., Müller, R., Rosentritt, M., Reischl, U., Handel, G., et al. (2009) Effects of Aging on Surface Properties and Adhesion of Streptococcus mutans on Various Fissure Sealants. Clinical Oral Investigations, 13, 419-426.
https://doi.org/10.1007/s00784-009-0256-6

[15]   Paravina, R., Roeder, L., Lu, H., Vogel, K. and Powers, J. (2004) Effect of Finishing and Polishing Procedures on Surface Roughness, Gloss and Color of Resin-Based Composites. American Journal of Dentistry, 17, 262-266.

[16]   St-Georges, A., Bolla, M., Fortin, D., Muller-Bolla, M., Thompson, J. and Stamatiades, P. (2005) Surface Finish Produced on Three Resin Composites by New Polishing Systems. Operative Dentistry, 30, 593-597.

[17]   Yap, A., Ng, J., Yap, S. and Teo, C. (2004) Surface Finish of Resin-Modified and Highly Viscous Glass Ionomer Cements Produced by New One-Step Systems. Operative Dentistry, 29, 87-91.

[18]   de Souza Ferreira, R., Carpena Lopes, G. and Narcisco Baratieri, L. (2004) Direct Posterior Resin Composite Restorations: Considerations on Finishing/Polishing. Clinical Procedures. Quintessence International, 35, 359-366.

[19]   Li, J., Helmerhorst, E., Leone, C.W., Troxler, R., Yaskell, T., Haffajee, A., et al. (2004) Identification of Early Microbial Colonizers in Human Dental Biofilm. Journal of Applied Microbiology, 97, 1311-1318.
https://doi.org/10.1111/j.1365-2672.2004.02420.x

[20]   Stewart, P.S. and Franklin, M.J. (2008) Physiological Heterogeneity in Biofilms. Nature Reviews Microbiology, 6, 199.
https://doi.org/10.1038/nrmicro1838

[21]   Pihlstrom, B.L., Michalowicz, B.S. and Johnson, N.W. (2005) Periodontal Diseases. The Lancet, 366, 1809-1820.
https://doi.org/10.1016/S0140-6736(05)67728-8

[22]   Bernardo, M., Luis, H., Martin, M.D., Leroux, B.G., Rue, T., Leitão, J., et al. (2007) Survival and Reasons for Failure of Amalgam versus Composite Posterior Restorations Placed in a Randomized Clinical Trial. The Journal of the American Dental Association, 138, 775-783.
https://doi.org/10.14219/jada.archive.2007.0265

[23]   Zijnge, V., van Leeuwen, M.B.M., Degener, J.E., Abbas, F., Thurnheer, T., Gmür, R., et al. (2010) Oral Biofilm Architecture on Natural Teeth. PLoS ONE, 5, e9321.
https://doi.org/10.1371/journal.pone.0009321

[24]   Guggenheim, B., Guggenheim, M., Gmür, R., Giertsen, E. and Thurnheer, T. (2004) Application of the Zürich Biofilm Model to Problems of Cariology. Caries Research, 38, 212-222.
https://doi.org/10.1159/000077757

[25]   Katsikogianni, M. and Missirlis, Y. (2004) Concise Review of Mechanisms of Bacterial Adhesion to Biomaterials and of Techniques Used in Estimating Bacteria-Material Interactions. European Cells & Materials, 8, 37-57.
https://doi.org/10.22203/eCM.v008a05

[26]   Sungurtekin-Ekci, E., Ozdemir-Ozenen, D., Duman, S., Acuner, I.C. and Sandalli, N. (2015) Antibacterial Surface Properties of Various Fluoride-Releasing Restorative Materials in Vitro. Journal of Applied Biomaterials & Functional Materials, 13, 169-173.
https://doi.org/10.5301/jabfm.5000212

[27]   Moshaverinia, A., Roohpour, N., Chee, W.W. and Schricker, S.R. (2011) A Review of Powder Modifications in Conventional Glass-Ionomer Dental Cements. Journal of Materials Chemistry, 21, 1319-1328.
https://doi.org/10.1039/C0JM02309D

[28]   Hafez, R., Ahmed, D., Yousry, M., El-Badrawy, W. and El-Mowafy, O. (2010) Effect of In-Office Bleaching on Color and Surface Roughness of Composite Restoratives. European Journal of Dentistry, 4, 118.

[29]   Vyavahare, N.G.S., Raghavendra, S.S. and Kazi, M.M. (2014) Effect of Finishing and Polishing Procedures on Biofilm Adhesion to Composite Surfaces: An ex Vivo Study. JDAS, 3, 70-73.

[30]   Kim, D.H. and Kwon, T.-Y. (2017) In Vitro Study of Streptococcus Mutans Adhesion on Composite Resin Coated with Three Surface Sealants. Restorative Dentistry & Endodontics, 42, 39-47.
https://doi.org/10.5395/rde.2017.42.1.39

[31]   Aytac, F., Karaarslan, E.S., Agaccioglu, M., Tastan, E., Buldur, M. and Kuyucu, E. (2016) Effects of Novel Finishing and Polishing Systems on Surface Roughness and Morphology of Nanocomposites. Journal of Esthetic and Restorative Dentistry, 28, 247-261.
https://doi.org/10.1111/jerd.12215

[32]   Costa, J.D., Ferracane, J., Paravina, R.D., Mazur, R.F. and Roeder, L. (2007) The Effect of Different Polishing Systems on Surface Roughness and Gloss of Various Resin Composites. Journal of Esthetic and Restorative Dentistry, 19, 214-224.
https://doi.org/10.1111/j.1708-8240.2007.00104.x

[33]   Nasoohi, N., Hoorizad, M. and Tabatabaei, S.F. (2017) Effects of Wet and Dry Finishing and Polishing on Surface Roughness and Microhardness of Composite Resins. Journal of Dentistry, 14, 69.

[34]   Zimmerli, B., Lussi, A. and Flury, S. (2011) Operator Variability Using Different Polishing Methods and Surface Geometry of a Nanohybrid Composite. Operative Dentistry, 36, 52-59.
https://doi.org/10.2341/10-096-LR1

[35]   Turssi, C.P., Ferracane, J.L. and Serra, M.C. (2005) Abrasive Wear of Resin Composites as Related to Finishing and Polishing Procedures. Dental Materials, 21, 641-648.
https://doi.org/10.1016/j.dental.2004.10.011

[36]   Ferracane, J. (1994) Elution of Leachable Components from Composites. Journal of Oral Rehabilitation, 21, 441-452.
https://doi.org/10.1111/j.1365-2842.1994.tb01158.x

[37]   Jung, M., Eichelberger, K. and Klimek, J. (2007) Surface Geometry of Four Nanofiller and One Hybrid Composite after One-Step and Multiple-Step Polishing. Operative Dentistry, 32, 347-355.
https://doi.org/10.2341/06-101

[38]   Brambilla, E., Cagetti, M.G., Gagliani, M., Fadini, L., García-Godoy, F. and Strohmenger, L. (2005) Influence of Different Adhesive Restorative Materials on Mutans Streptococci Colonization. American Journal of Dentistry, 18, 173.

[39]   Kolenbrander, P.E., Palmer, R.J., Rickard, A.H., Jakubovics, N.S., Chalmers, N.I. and Diaz, P.I. (2000) Bacterial Interactions and Successions during Plaque Development. Periodontology, 42, 47-79.
https://doi.org/10.1111/j.1600-0757.2006.00187.x

[40]   Ozel, G.S., Guneser, M.B., Inan, O. and Eldeniz, A.U. (2017) Evaluation of C. albicans and S. mutans Adherence on Different Provisional Crown Materials. The Journal of Advanced Prosthodontics, 9, 335-340.
https://doi.org/10.4047/jap.2017.9.5.335

[41]   Poggio, C., Arciola, C.R., Rosti, F., Scribante, A., Saino, E. and Visai, L. (2009) Adhesion of Streptococcus mutans to Different Restorative Materials. The International Journal of Artificial Organs, 32, 671-677.
https://doi.org/10.1177/039139880903200917

[42]   Montanaro, L., Campoccia, D., Rizzi, S., Donati, M.E., Breschi, L., Prati, C., et al. (2004) Evaluation of Bacterial Adhesion of Streptococcus mutans on Dental Restorative Materials. Biomaterials, 25, 4457-4463.
https://doi.org/10.1016/j.biomaterials.2003.11.031

[43]   Kawai, K., Urano, M. and Ebisu, S. (2000) Effect of Surface Roughness of Porcelain on Adhesion of Bacteria and Their Synthesizing Glucans. Journal of Prosthetic Dentistry, 83, 664-667.
https://doi.org/10.1067/mpr.2000.107442

[44]   Saku, S., Kotake, H., Scougall-Vilchis, R.J., Ohashi, S., Hotta, M., Horiuchi, S., et al. (2010) Antibacterial Activity of Composite Resin with Glass-Ionomer Filler Particles. Dental Materials Journal, 29, 193-198.
https://doi.org/10.4012/dmj.2009-050

[45]   Meier, R., Hauser-Gerspach, I., Lüthy, H. and Meyer, J. (2008) Adhesion of Oral Streptococci to All-Ceramics Dental Restorative Materials in Vitro. Journal of Materials Science: Materials in Medicine, 19, 3249.
https://doi.org/10.1007/s10856-008-3457-7

[46]   Hsu, L.C., Fang, J., Borca-Tasciuc, D.A., Worobo, R.W. and Moraru, C.I. (2013) Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces. Applied and Environmental Microbiology, 79, 2703-2712.
https://doi.org/10.1128/AEM.03436-12

[47]   Rodríguez-Hernández, A.G., Juárez, A., Engel, E. and Gil, F. (2011) Streptococcus sanguinis Adhesion on Titanium Rough Surfaces: Effect of Shot-Blasting Particles. Journal of Materials Science: Materials in Medicine, 22, 1913-1922.
https://doi.org/10.1007/s10856-011-4366-8

[48]   Martínez-Gomis, J., Bizar, J., Anglada, J.M., Samsó, J. and Peraire, M. (2003) Comparative Evaluation of Four Finishing Systems on One Ceramic Surface. International Journal of Prosthodontics, 16, 74-77.

[49]   Harris, L.G., Meredith, D.O., Eschbach, L. and Richards, R.G. (2007) Staphylococcus aureus Adhesion to Standard Micro-Rough and Electropolished Implant Materials. Journal of Materials Science: Materials in Medicine, 18, 1151-1156.
https://doi.org/10.1007/s10856-007-0143-0

[50]   Wu, S., Altenried, S., Zogg, A., Zuber, F., Maniura-Weber, K. and Ren, Q. (2018) Role of the Surface Nanoscale Roughness of Stainless Steel on Bacterial Adhesion and Microcolony Formation. ACS Omega, 3, 6456-6464.
https://doi.org/10.1021/acsomega.8b00769

[51]   Eick, S., Glockmann, E., Brandl, B. and Pfister, W. (2004) Adherence of Streptococcus mutans to Various Restorative Materials in a Continuous Flow System. Journal of Oral Rehabilitation, 31, 278-285.
https://doi.org/10.1046/j.0305-182X.2003.01233.x

 
 
Top