Back
 JWARP  Vol.11 No.1 , January 2019
Future Extremes Temperature: Trends and Changes Assessment over the Mono River Basin, Togo (West Africa)
Abstract: This study assessed the extreme temperatures trends and changes over Mono River Basin under the highest greenhouse gas emission scenario RCP8.5. Simulations of five (5) regional climate models (RCMs) provided by Africa-CORDEX program were selected from the eighth (8) considered. Future trends in temperature percentiles, including extremes, are used to assess changes in the distribution of daily temperature over Mono Basin in Togo. Changes of temperature and Extreme low (high) temperatures from the baseline period 1961-2010 were computed for future (2051-2100). This analysis reveals that in the north of the basin, for the positive trends, the maximum is 0.82°C·year-1 given by model MPI-ESM2 at Tchamba while the strongest negative change is 0.26°C·year-1 given by model MIROC at Sotouboua. In the south of the basin, the strongest negative trend is of 0.03°C·year-1 given by model (A) CNRM-CMA5. The maximum ones of the trends for models-mean are all positive except at Anié. Higher percentiles of minimum and maximum temperature will increase at a greater rate than the lower percentiles during dry and rainy seasons (with differences more pronounced for maximum values) over the north. Concerning future changes, almost all the RCMs predicted an increase of maximum and minimum temperatures over most parts of the Mono Basin, particularly in the north. Finally, results predicted an increase of TX90P (TX10P) and TN90P (TN10P) from 10% to 45% (13% to 40%) and 0% to 35% (12% Mean value), respectively over Mono Basin.
Cite this paper: Emmanuel, L. , Batablinlè, L. , Célestin, M. and Hodabalo, K. (2019) Future Extremes Temperature: Trends and Changes Assessment over the Mono River Basin, Togo (West Africa). Journal of Water Resource and Protection, 11, 82-98. doi: 10.4236/jwarp.2019.111006.
References

[1]   IPCC (2013) The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change 1535.

[2]   Lewis, S.C. and King, A.D. (2017) Evolution of Mean, Variance and Extremes in 21st Century Temperatures. Weather and Climate Extremes, 15, 1-10.
https://doi.org/10.1016/j.wace.2016.11.002

[3]   Diallo, I., Giorgi, F., Deme, A., Tall, M., Mariotti, L. and Gaye, A.T. (2016) Projected Changes of Summer Monsoon Extremes and Hydroclimatic Regimes over West Africa for the Twenty-First Century. Climate Dynamics, 47, 3931-3954.
https://doi.org/10.1007/s00382-016-3052-4

[4]   Easterling, D.R., Evans, J.L., Groisman, P.Y., Karl, T.R., Kunkel, K.E. and Ambenye, P. (2000) Observed Variability and Trends in Extreme Climate Events: A Brief Review. Bulletin of the American Meteorological Society, 81, 417-425.
https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2

[5]   Powell, E.J. and Keim, B.D. (2015) Trends in Daily Temperature and Precipitation Extremes for the Southeastern United States: 1948-2012. Journal of Climate, 28, 1592-1612.
https://doi.org/10.1175/JCLI-D-14-00410.1

[6]   N’Tcha M’Po, Y., Lawin, A.E., Yao, K.B., Oyerinde, G.T., Attogouinon, A. and Afouda, A.A. (2017) Decreasing Past and Mid-Century Rainfall Indices over the Ouémé River Basin, Benin (West Africa). Climate, 5, 74.
https://doi.org/10.3390/cli5030074

[7]   Aguilar, E., et al. (2009) Changes in Temperature and Precipitation Extremes in Western Central Africa, Guinea Conakry, and Zimbabwe, 1955-2006. Journal of Geophysical Research, 114, D02115.
https://doi.org/10.1029/2008JD011010

[8]   Batablinle, L, Lawin, E. and Agnide, S. (2018) Africa-Cordex Simulations Projection of Future Temperature, Precipitation, Frequency and Intensity Indices over Mono Basin in West Africa. Journal of Earth Science and Climatic Change, 9, 490.
https://doi.org/10.4172/2157-7617.1000490

[9]   Amegadje, M.K. (2007) Profil Environnemental du Togo. Final Report Prepared for the European Commission and the Ordonnateur National du Fonds Européen de Développement. Republic of Togo, Lomé.

[10]   Abdulai, J., Gerald, C.N., Timothy, S.T., Robert, Z. and Harold, R.-M. (2013) West African Agriculture and Climate Change. International Food Policy Research Institute.
http://dx.doi.org/10.2499/9780896292048

[11]   Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. and Meehl, G.A. (2010) Challenges in Combining Projections from Multiple Climate Models. Journal of Climate, 23, 2739-2758.
https://doi.org/10.1175/2009JCLI3361.1

[12]   Nicholson, S.E. and Webster, P.J. (2007) A Physical Basis for the Interannual Variability of Rainfall in the Sahel. Quarterly Journal of the Royal Meteorological Society, 133, 2065-2084.

[13]   Nelson, G.C., Rosegrant, M.W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R. and Tokgoz, S. (2010) Food Security, Farming, and Climate Change to 2050: Scenarios, Results, Policy Options. International Food Policy Research Institute, Washington DC.

[14]   Klutse, N.A.B., Sylla, M.B., Diallo, I., Sarr, A. and Dosio, A. (2016) Daily Characteristics of West African Summer Monsoon Precipitation in CORDEX Simulations. Theoretical and Applied Climatology, 123, 369-386.
https://doi.org/10.1007/s00704-014-1352-3

[15]   Camara, M., Diédhiou, A., Sow, B.A., Diallo, M.D., Diatta, S., Mbaye, I. and Diallo, I. (2013) Analyse de la pluie simulée par les modèles climatiques régionaux de CORDEX en Afrique de l’Ouest. Sécheresse, 24.

[16]   Nikulin, G., et al. (2018) The Effects of 1.5 and 2 Degrees of Global Warming on Africa in the CORDEX Ensemble. Environmental Research Letters, 13, Article ID: 065003.

[17]   Moss, R., Edmonds, J., Hibbard, K., Manning, M. and Rose, S. (2010) The Next Generation of Scenarios for Climate Change Research and Assessment. Nature, 468, 747-756.
https://doi.org/10.1038/nature08823

[18]   Sarr, M.A., Seidou, O., Tramblay, Y. and El Adlouni, S. (2015) Comparison of Downscaling Methods for Mean and Extreme Precipitation in Senegal. Journal of Hydrology, 4, 369-385.
https://doi.org/10.1016/j.ejrh.2015.06.005

[19]   Lin, W. and Wen, C. (2013) A CMIP5 Multimodel Projection of Future Temperature Precipitation and Climatological Drought in China. International Journal of Climatology, 34, 2059-2078.

[20]   Christidis, N., Jones, G.S. and Stott, P.A. (2014) Dramatically Increasing Chance of Extremely Hot Summers since the 2003 European Heatwave. Nature Climate Change, 5, 46-50.
https://doi.org/10.1038/nclimate2468

[21]   Meehl, G.A., Tebaldi, C., Walton, G., Easterling, D. and McDaniel, L. (2009) Relative Increase of Record High Maximum Temperatures Compared with Record Low Minimum Temperatures in the U.S. Geophysical Research Letters, 36, L23701.
https://doi.org/10.1029/2009GL040736

[22]   GIEC (2013) Résumé à l’intention des décideurs, Changements climatiques: Les éléments scientifiques. Contribution du Groupe de travail I au cinquième Rapport d’evaluation du Groupe d’experts intergouvernemental sur l’evolution du climat. Cambridge University Press, Cambridge, Royaume-Uni et New York.

 
 
Top