Back
 ACES  Vol.9 No.1 , January 2019
Investigation of Different Ionic Liquids in Improving Oil Recovery Factor
Abstract: In order to improve oil recovery, Enhanced Oil Recovery (EOR) techniques have been applied to several light and medium oil reservoirs. This research was directed towards the development of chemical flooding methods for such reservoirs. The main objective of this experimental work was to investigate the efficiency of introducing various types of Ionic Liquids (ILs), 1-Ethyl-3-methylimidazolium Chloride [EMIM][Cl], 1-Benzyl-3-methylimidazolium Chloride [BenzMIM][Cl], and Trihexyltetradecylphosphonium Chloride [THTDPh][Cl] on the Recovery Factor (RF) of medium oil (Weyburn oil, 30.25 API°) at room temperature. The series of flooding experiments were carried out by introducing a slug of IL mixtures. Results demonstrated that maximum oil recovery factor was obtained when [EMIM][Cl] was added in the displacing fluid. Further investigations have been conducted to examine the effect of ILs concentrations on the recovery mechanisms by measuring Surface Tension (SFT), pH, and viscosity of the displacing phases. Finally, the effect of theses ILs in wettability alteration was examined.
Cite this paper: Alarbah, A. , Shirif, M. and Shirif, E. (2019) Investigation of Different Ionic Liquids in Improving Oil Recovery Factor. Advances in Chemical Engineering and Science, 9, 87-98. doi: 10.4236/aces.2019.91007.
References

[1]   Green, D.W. and Willhite, G.P. (1998) Enhanced Oil Recovery. Henry L. Doherty Memorial Fund of AIME. Society of Petroleum Engineers, Richardson, TX.

[2]   Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E. and Rogers, R.D. (1998) Room Temperature Ionic Liquids as Novel Media for “Clean” Liquid-Liquid Extraction. Chemical Communications, 16, 1765-1766.
https://doi.org/10.1039/A803999B

[3]   Kelkar, M.S. and Maginn, E.J. (2007) Effect of Temperature and Water Content on the Shear Viscosity of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Bis (Trifluoromethanesulfonyl) Imide as Studied by Atomistic Simulations. The Journal of Physical Chemistry B, 111, 4867-4876.
https://doi.org/10.1021/jp0686893

[4]   Lago, S., Francisco, M., Arce, A. and Soto, A. (2013) Enhanced Oil Recovery with the Ionic Liquid Trihexyl (Tetradecyl) Phosphonium Chloride: A Phase Equilibria Study at 75°C. Energy & Fuels, 27, 5806-5810.
https://doi.org/10.1021/ef401144z

[5]   Domańska, U. and Królikowska, M. (2010) Effect of Temperature and Composition on the Surface Tension and Thermodynamic Properties of Binary Mixtures of 1-Butyl-3-Methylimidazolium Thiocyanate with Alcohols. Journal of Colloid and Interface Science, 348, 661-667.
https://doi.org/10.1016/j.jcis.2010.04.060

[6]   Kumar, B. (2012) Effect of Salinity on the Interfacial Tension of Model and Crude Oil Systems.

[7]   Kopczynska, A. (2007) Polymeric Surfaces and Their True Surface Tension in Solids and Melts. Journal of Materials Education, 29, 325.

[8]   Khan, M.Y., Samanta, A., Ojha, K. and Mandal, A. (2008) Interaction between Aqueous Solutions of Polymer and Surfactant and Its Effect on Physicochemical Properties. Asia-Pacific Journal of Chemical Engineering, 3, 579-585.
https://doi.org/10.1002/apj.212

[9]   Hezave, A.Z., Raeissi, S. and Lashkarbolooki, M. (2012) Estimation of Thermal Conductivity of Ionic Liquids Using a Perceptron Neural Network. Industrial & Engineering Chemistry Research, 51, 9886-9893.
https://doi.org/10.1021/ie202681b

[10]   Rodríguez-Escontrela, I., Rodríguez-Palmeiro, I., Rodríguez, O., Arce, A. and Soto, A. (2016) Characterization and Phase Behavior of the Surfactant Ionic Liquid Tributylmethylphosphonium Dodecylsulfate for Enhanced Oil Recovery. Fluid Phase Equilibria, 417, 87-95.
https://doi.org/10.1016/j.fluid.2016.02.021

[11]   Anderson, W. (1986) Wettability Literature Survey-Part 2: Wettability Measurement. Journal of Petroleum Technology, 38, 1246-1262.
https://doi.org/10.2118/13933-PA

[12]   Bin-dahbag, M.S., Al Quraishi, A.A., Benzagouta, M.S., Kinawy, M.M., Al Nashef, I.M. and Al, E. (2014) Experimental Study of Use of Ionic Liquids in Enhanced Oil Recovery.

[13]   Mohammed, M.A. and Babadagli, T. (2016) Experimental Investigation of Wettability Alteration in Oil-Wet Reservoirs Containing Heavy Oil. SPE Reservoir Evaluation & Engineering.
https://doi.org/10.2118/170034-PA

[14]   Hezave, A.Z., Dorostkar, S., Ayatollahi, S., Nabipour, M. and Hemmateenejad, B. (2013) Investigating the Effect of Ionic Liquid (1-Dodecyl-3-Methylimidazolium Chloride ([C 12 mim][cl])) on the Water/Oil Interfacial Tension as a Novel Surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 421, 63-71.
https://doi.org/10.1016/j.colsurfa.2012.12.008

[15]   Fathi, S.J., Austad, T. and Strand, S. (2011) Water-Based Enhanced Oil Recovery (EOR) by “Smart Water”: Optimal Ionic Composition for EOR in Carbonates. Energy & Fuels, 25, 5173-5179.
https://doi.org/10.1021/ef201019k

[16]   Alarbah, A., Shirif, M. and Shirif, E. (2017) Efficiency of Ionic Liquid 1-Ethyl-3-Methyl-Imidazolium Acetate ([EMIM][Ac]) in Enhanced Medium Oil Recovery. Advances in Chemical Engineering and Science, 7, 291.
https://doi.org/10.4236/aces.2017.73022

[17]   Ober, C.A. and Gupta, R.B. (2012) pH Control of Ionic Liquids with Carbon Dioxide and Water: 1-Ethyl-3-Methylimidazolium Acetate. Industrial & Engineering Chemistry Research, 51, 2524-2530.
https://doi.org/10.1021/ie201529d

[18]   Jones, S. and Roszelle, W. (1978) Graphical Techniques for Determining Relative Permeability from Displacement Experiments. Journal of Petroleum Technology, 30, 807-817.
https://doi.org/10.2118/6045-PA

 
 
Top