Back
 GEP  Vol.7 No.1 , January 2019
Studies on Characteristics, Applications and Strength Improvement of Marine Clay: A Review
Abstract: Strength assessment and improvement of strength parameters are essential to design the foundation in clay and marine clay. Several studies have been made in this aspect. Marine clay is also a potential material for use as liner material to contain landfill leach ate. The applications include use of marine clay for transforming waste into light weight aggregates and thus create better environment. The physical parameters such as Atterberg limits, California Bearing Ratio (CBR) value, dry density, specific gravity, free swell, chemical properties such as pH value, cation exchange capacity, organic matter content, calcium carbonate, and mineralogical composition using X-ray diffraction analysis are studied. The consolidation characteristics, determination of strength improvement strategies using admixtures at different proportions are frequently adopted. Commonly used admixtures are lime, limes mixed with cement, coir, shredded plastics. The consolidation studies are very vital and play an important role.
Cite this paper: Saisubramanian, R. , Murugaiyan, V. and Sundararajan, T. (2019) Studies on Characteristics, Applications and Strength Improvement of Marine Clay: A Review. Journal of Geoscience and Environment Protection, 7, 93-106. doi: 10.4236/gep.2019.71008.
References

[1]   Anil Kumar, P. S., Sankar, N., & Chandrakaran, S. (2010). Behaviour of Marine Clays under Cyclic Loading: A Study of Marine Clays of Kochi. International Journal of Earth Sciences and Engineering, 3, 85-90.

[2]   Arasan, S., Kagan Akbulut, F. R., Zaimoglu, A. S., & Nasirpur, O. (2015). Rapid Stabilization of Sands with Deep Mixing Method Using Polyester. Periodica Polytechnica, Civil Engineering, 59, 405-411.
https://doi.org/10.3311/PPci.7956

[3]   Arulrajah, A., & Bo, M. W. (2008). Characteristics of Singapore Marine Clay at Changi. Geotechnical and Geological Engineering, 26, 431-441.
https://doi.org/10.1007/s10706-008-9179-2

[4]   Avinash, K., Kurian, P. J., Warrier, A. K., Shankar, R., & Vineesh, T. C. (2015). Sedimentary Sources and Processes in the Eastern Arabian Sea: Insights from Environmental Magnetism, Geochemistry and Clay Mineralogy. Geoscience Frontiers, 7, 253-264.
https://doi.org/10.1016/j.gsf.2015.05.001

[5]   Basack, S., & Purkayastha, R. D. (2009). Engineering Properties of Marine Clays from the Eastern Coast of India. Journal of Engineering and Technology Research, 1, 109-114.

[6]   Bushra, I., & Robinson, R. G. (2010). Strength Behaviour of Cement Stabilised Marine Clay Cured under Stress. In Indian Geotechnical Conference-2010 GEOtrendz (pp. 600-604). Mumbai Chapter & IIT Bombay: IGS.

[7]   Cheng, Q. Q., Yao, K., & Liu, Y. (2018). Stress-Dependent Behaviour of Marine Clay Admixed with Fly As-Blended Cement. International Journal of Pavement Research and Technology, 11, 611-616.
https://doi.org/10.1016/j.ijprt.2018.01.004

[8]   Consoli, N. C., & Prietto, P. (2006). Yielding-Compressibility-Strength Relationship for an Artificially Cemented Soil Cured under Stress. Geotechnique, 56, 69-72.
https://doi.org/10.1680/geot.2006.56.1.69

[9]   Du, H., & Pang, S. D. (2018). Value-Added Utilization of Marine Clay as Cement Replacement for Sustainable Concrete Production. Journal of Cleaner Production, 198, 867-873.
https://doi.org/10.1016/j.jclepro.2018.07.068

[10]   Elkateb, T. (2017). Stress-Dependent Consolidation Characteristics of Marine Clay in the Northern Gulf. Ains Shams Engineering Journal, 9, 2291-2299.
https://doi.org/10.1016/j.asej.2017.05.001

[11]   Gens, A., Valleja’N, B. A’nchez, M.S., Imbert, C., Villar, M.V., & Vangeet, M. (2011). Hydromechanical Behaviour of a Heterogeneous Compacted Soil: Experimental Observations and Modelling. Geotechnique, 61, 367-386.
https://doi.org/10.1680/geot.SIP11.P.015

[12]   George, S., Paul, J., & Jacob, J. (2014). Heavy Metal Retention of Cochin Marine Clay. International Journal of Engineering Research and Development, 9, 54-59.

[13]   Guo, L., & Wu, D.-Q. (2018). Study of Leaching Scenarios for the Application of Incineration Bottom Ash and Marine Clay for Land Reclamation. Sustainable Environment Research, 28, 396-402.
https://doi.org/10.1016/j.serj.2018.06.004

[14]   Horpibulsuk, S., Suddeepong, A., Chinkulkijniwat, A., & Lu, M. D. (2012) Strength and Compressibility of Lightweight Cemented Clays. Applied Clay Science, 6911-6921.
https://doi.org/10.1016/j.clay.2012.08.006

[15]   Horpibuluk, S., & Suddeepong, R. R. A. (2011). Assessment of Strength Development in Blended Cement Admixed Bangkok Clay. Construction and Building Materials, 25, 1521-1531.
https://doi.org/10.1016/j.conbuildmat.2010.08.006

[16]   Horpibuluk, S., Miur, N., & Nagraj, T. S. (2005). Clay-Water/Cement Ratio Identity for Cement Admixed Soft Clays. Journal of Geotechnical and Geo Environmental Engineering, 131, 187-192.
https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(187)

[17]   Indrarathna, B., Balasubramaniam, A. S., Poulos, H., Rujikiatkamjorn, C., & Ameratunga, J. (2013). Performance and Prediction of Marine Clay Treated with Vacuum and Surcharge Consolidation at Port of Brisbane. Australian Geomechanics Journal, 1484, 161-180.

[18]   Jose, B. T., Sridharan, A., & Abraham, B. M. (1988). A Study of Geotechnical Properties of Cochin Marine Clays. Marine Geology, 7, 189-1988.

[19]   Joseph, A., Chandrakaran, S., Sankar, N., & Jose, B. T. (2013). Studies on Behaviour of Lime Stabilized Marine Clay on Pre Compression. In Proceedings of Indian Geotechnical Conference (1-4).

[20]   Kirshnapriya, P. B., Sandeep, M. N., & Antony, J. (2016). Efficiency of Vacuum Preloading on Consolidation Behaviour of Cochin Marine Clay. International Conference on Emerging Trends in Engineering, Science and Technology, 24, 256-262.

[21]   Koteswararao, D. Pranav, P. R. T., & Ganja, V. (2012). A Laboratory Study on Lime and Sawdust Treated Marine Clay Sub Grade Flexible Pavement under Cyclic Pressure. International Journal of Engineering and Innovative Technology, 2, 207-210.

[22]   Koteswararao, D., Anusha, M., Pranav, P. R. T., & Venkatesh, G. (2012). A Laboratory Study on the Stabilization of Marine Clay Using Saw Dust and Lime. International Journal of Engineering Science and Advanced Technology, 2, 851-862.

[23]   Koteswararao, D., Sruthi, M., & Suryaditya, R. (2011). A Study on the Influence of Lime on Fly Ash Treated Marine Clay. International Journal of Engineering Science and Technology, 3, 6412-6422.

[24]   Leng, J., Liao, C., Ye, G., & Jeng, D. S. (2018). Laboratory Study for Soil Structure Effect on Marine Clay Response Subjected to Cyclic Loads. Ocean Engineering, 147, 45-50.
https://doi.org/10.1016/j.oceaneng.2017.10.020

[25]   Maheswari, K., Hsolanki, C., Atul, D., & Desai, K. (2013). Effect of Polyester Fibers on Strength Properties of Clayey Soil of High Plasticity. International Journal of Scientific & Engineering Research, 4, 486-491.

[26]   Mersi, G., & Khan, A. Q. (2012). Ground Improvement Using Vacuum Loading Together with Vertical Drains. Journal of Geotechnical and Geoenvironmental Engineering, 138, 680-689.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000640

[27]   Phetchuay, C., Horpibulsuk, S., Arulrajah, A., Suksiripattanapong, C., & Udomchai, A. (2016). Strength Development in Soft Marine Clay Stabilized by Fly Ash and Calcium Carbide Residue Based Geopolymer. Applied Clay Science, 127-128, 134-142.
https://doi.org/10.1016/j.clay.2016.04.005

[28]   Prakasha, K. S., & Chandrasekaran, V. S. (2005). Behaviuor of Marine Sand-Clay Mixtures under Static and Cyclic Triaxial Shear. Journal of Geotechnical and Geoenvironmental Engineering, 131, 213-222.
https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(213)

[29]   Rahman, Z. A., Yaacob, W. Z. W., Rahim, S. A., Lihan, T., & Idris, W. M. R. (2013). Geotechnical Characterisation of Marine Clay as Potential Liner Material. Sains Malaysia, 42, 1081-1089.

[30]   Ravi Tej, P., & Singh, D. N. (2013). Estimation of Tensile Strength of Soils from Penetration Resistance. International Journal of Geomechanics, 13, 496-501.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000234

[31]   Ravishankar, P., & Satyam, N. (2015). Interaction Analysis for Oil Storage Tanks on Marine Clay. International Journal of Geomate, 8, 1123-1129.

[32]   Sarada, T., & Venkata Muthyalu, P. (2015). A Laboratory Study on Consolidation Characteristic of Marine Clay Treated with Fly Ash and Additives. International Journal on Recent & Innovative Trend in Technology, 1, 42-54.

[33]   Saranya, K., & Muttharam, M. (2013). Consolidation Stress Effect on Strength of Lime Stabilized Soil. International Journal of Engineering and Research Applications, 3, 1515-1519.

[34]   Sasanian, S., & Newson, T. A. (2014). Basic Parameters Governing the Behaviour of Cement-Treated Clays. Soils and Foundation, 54, 209-224.
https://doi.org/10.1016/j.sandf.2014.02.011

[35]   Satyanarayana, B. R., & Satyanarayana, C. N. V. (2010). Development of Empirical Equation for Compressibility of Marine Clays. In Indian Geotechnical Conference (pp. 886-887).

[36]   Shen, S.-L., Han, J., & Du, Y.-J. (2008). Deep-Mixing Induced Property Changes in Surrounding Sensitive Marine Clays. Journal of Geotechnical and Geoenvironmental Engineering, 134, 845-854.
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(845)

[37]   Show, K.-Y., Lee, D.-J., Tay, J.-H., Hong, S.-Y., & Chien, C.-Y. (2005). Lightweight Aggregates from Industrial Sludge-Marine Clay Mixes. Journal of Environmental Engineering, 131, 1106-1113.
https://doi.org/10.1061/(ASCE)0733-9372(2005)131:7(1106)

[38]   Taha, A., & Fall, M. (2013). Shear Behaviour of Sensitive Marine Clay-Concrete Interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 139, 644-650.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000795

[39]   Tsuchida, T., & Tang, Y. X. (2015). Estimation of Compressive Strength of Cement-Treated Marine Clays with Different Initial Water Contents. Soils and Foundations, 55, 359-374.
https://doi.org/10.1016/j.sandf.2015.02.011

[40]   Won, J. Y. (2013). Anisotropic Strength Ratio and Plasticity Index of Natural Clays. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 445-448).

[41]   Wu, D. Q., Xu, W. Y., & Tjuar, R. (2015). Improvements of Marine Clay Slurries Using Chemical-Physical Combined Method (CPCM). Journal of Rock Mechanics and Geotechnical Engineering, 7, 220-225.
https://doi.org/10.1016/j.jrmge.2015.02.001

[42]   Xiao, H. W., & Lee, F. H. (2008). Curing Time Effect on Behaviour of Cement Treated Marine Clay. International Journal of Civil, Environmental, Structural Construction and Architectural Engineering, 2, 144-151.

[43]   Xiao, H. W., Lee, F. H., & Chin, K. G. (2014). Yielding of Cement-Treated Marine Clay. Soils and Foundations, 54, 488-501.
https://doi.org/10.1016/j.sandf.2014.04.021

[44]   Xiao, H., Wang, W., & Goh, S. H. (2017). Effectiveness Study for Fly Ash Cement Improved Marine Clay. Construction and Building Materials, 157, 1053-1064.
https://doi.org/10.1016/j.conbuildmat.2017.09.070

[45]   Yaghoubi, M. J., Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Darmawan, S., & Wang, J. (2019). Impact of Field Conditions on the Strength Development of a Geopolymer Stabilized Marine Clay. Applied Clay Science, 167, 33-42.
https://doi.org/10.1016/j.clay.2018.10.005

[46]   Zainuddin, N., Yunus, N. Z. M., Al-Bared, M. A. M., Marto, A., Harahap, I. S. H., & Rashid, A. S. A. (2019). Measuring the Engineering Properties of Marine Clay Treated with Disposed Granite Waste. Measurement, 131, 50-60.
https://doi.org/10.1016/j.measurement.2018.08.053

 
 
Top