[1] Chen, S., Donoho, D. and Saunders M. (1998) Atomic Decomposition by Basis Pursuit. SIAM Journal on Scienti_c Computing, 20, 33-61.
https://doi.org/10.1137/S1064827596304010
[2] Donoho, D. and Logan, B.F. (1992) Signal Recovery and the Large Sieve. SIAM Journal on Applied Mathematics, 52, 577-591.
https://doi.org/10.1137/0152031
[3] Donoho, D. and Stark, P.B. (1989) Uncertainty Principles and Signal Recovery. SIAM Journal on Applied Mathematics, 49, 906-931.
https://doi.org/10.1137/0149053
[4] Santosa, F. and Symes, W. (1986) Linear Inversion of Band-Limited Reection Seismograms. SIAM Journal on Scienti_c and Statistical Computing, 7, 1307-1330.
https://doi.org/10.1137/0907087
[5] Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B, 58, 267-288.
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
[6] Zhang, H., Yin, W. and Cheng, L. (2015) Necessary and Sufficient Conditions of Solution Uniqueness in l1-Norm Minimization. Journal of Optimization Theory and Applications, 154, 09-122. https://doi.org/10.1007/s10957-014-0581-z
[7] Candes, E., Wakins, W. and Boyd, S. (2008) Enhancing Sparsity by Reweighted l1-Minimization. Journal of Fourier Analysis Application, 14, 877-905.
https://doi.org/10.1007/s00041-008-9045-x
[8] Foucart, S. and Lai, M. (2009) Sparsest Solutions of Underdetermined Linear Systems via lq-Minimization for 0 < q _ 1. Applied and Computational Harmonical Analysis, 26, 395-407.
https://doi.org/10.1016/j.acha.2008.09.001
[9] Lai, M.J. (2010) On Sparse Solutions of Underdetermined Linear Systems. Journal of Concrete & Applicable Mathematics, 8, 296-327.
[10] Zhu, J. and Li, X. (2013) A Generalized l1 Greedy Algorithm for Image Reconstruction in CT. Applied Mathematics and Computation, 219, 5487-5494.
https://doi.org/10.1016/j.amc.2012.11.052
[11] Kozlov, I. and Petukhov, A. (2010) Sparse Solutions for Underdetermined Linear System. In: Freeden, W., Nashed, M.Z. and Sonar, T., Eds., Handbook of Geomathematics, Vol. 1, Springer, New York, 1243-1260.
https://doi.org/10.1007/978-3-642-01546-5 42
[12] Zhu, J., Li, X., Arroyo, F. and Arroyo, E. (2015) Error Analysis of Reweighted l1 Greedy Algorithm for Noisy Reconstruction. Journal of Computational and Applied Mathematics, 286, 93-101. https://doi.org/10.1016/j.cam.2015.02.038
[13] Kim, H., Chen, J., Wang, A., Chuang, C., Held, M. and Poullot, J. (2016) Non-Local Total-Variation (NLTV) Minimization Combined with Reweighted l1-Norm for Compressed Sensing CT Reconstruction. Physics in Medicine & Biology, 61, 6878-6891.
https://doi.org/10.1088/0031-9155/61/18/6878
[14] Tao, M. and Yang, F. (2009) Alternating Direction Algorithms for Total Variation Deconvolution in Image Reconstruction. TR0918, Department of Mathematics, Nanjing University, Optimization.
[15] Yang, J. and Zhang, Y. (2011) Alternating Direction Algorithms for l1-Problems in Compressive Sensing. SIAM Journal on Scientific Computing, 33, 250-278.
https://doi.org/10.1137/090777761
[16] Goldstein, T., O'Donoghue, B., Setzer, S. and Baraniuk, R. (2014) Fast Alternating Direction Optimization Methods. SIAM Journal on Imaging Sciences, 7, 1588-1623.
https://doi.org/10.1137/120896219
[17] Lu, C., Feng, J., Yan, S. and Liu, Z. (2018) A Uni_ed Alternating Direction Method of Multipliers by Majorization Minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 527-541.
https://doi.org/10.1109/TPAMI.2017.2689021
[18] Li, C., Yin, W., Jiang, H. and Zhang, T. (2013) An E_cient Augmented Lagrangian Method with Applications to Total Variation inimization. Computational Optimization and Applications, 56, 07-530. ttps://doi.org/10.1007/s10589-013-9576-1
[19] Li, C., Yin, W. and Zhang, Y. (2010) Users Guide for TVAL3: V Minimization by Augmented Lagrangian and Alternating Direction Algorithms. CAAM Report.
[20] Kak, A.C. and Slaney, M. (2001) Principles of Computerized Tomographic Imaging. Society of Industrial and Applied Mathematics, Philadelphia. ttps://doi.org/10.1137/1.9780898719277