JAMP  Vol.7 No.1 , January 2019
The Spherical Atom Model of Helium Based on the Theorem of Niels Bohr
Abstract: Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in [13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis perpendicular to the first one. Thereby, each rotation is induced by the spin of one electron. Thus the trajectory of each electron represents the superposition of two separate orbits, while each electron is always positioned opposite to the other one. Both electron velocities are equal and constant, due to their mutual coupling. The 3D electron orbits could be 2D-graphed by separately projecting them on the x/z-plane of a Cartesian coordinate system, and by plotting the evaluated x-, y- and z-values versus the rotation angle. Due to the decreased electron velocity, the resulting radius is twice the size of the one in the double-cone model. Even if distinct evidence is not feasible, e.g. by means of X-ray crystallographic data, this modified model appears to be the more plausible one, due to its higher cloud coverage, and since it comes closer to Kimball’s charge cloud model.
Cite this paper: Allmendinger, T. (2019) The Spherical Atom Model of Helium Based on the Theorem of Niels Bohr. Journal of Applied Mathematics and Physics, 7, 172-180. doi: 10.4236/jamp.2019.71015.

[1]   Bohr, N. (1913) On the Constitution of Atoms and Molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26, 1-25.

[2]   Planck, M. (1900) Ueber Irreversible Strahlungsvorgange. Annals of Physics, 306, 69-116.

[3]   Einstein, A. (1905) Ueber einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt. Annals of Physics, 322, 132-148.

[4]   Balmer, J.J. (1885) Notiz über die Spectrallinien des Wasserstoffs. Annalen der Physik, 25, 80-87.

[5]   Kimball, G.E. (1940) Directed Valence. Journal of the Physical Chemistry, 8, 188.

[6]   Uhlenbeck, G.E. and Goudsmith, S. (1925) Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Naturwissenschaften, 13, 953.

[7]   Uhlenbeck, G.E. and Goudsmith, S. (1926) Spinning Electrons and the Structure of Spectra. Nature, 117, 264-265.

[8]   Allmendinger, T. (2016) A Classical Approach to the De Broglie-Wave Based on Bohr’s H-Atom-Model. International Journal of Applied Mathematics and Theoretical Physics, 2, 1-15.

[9]   Allmendinger, T. (2018) The Elucidation of the Ground State in the H-Atom-Model of Niels Bohr and Its Application on the Bond-Length Computation in the H2-Molecule. International Journal of Molecular and Theoretical Physics, 2, 1-10.

[10]   Heitler, W. and London, F. (1927) Wechselwirkung neutraler Atome und homoopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455-472.

[11]   Heitler, W. (1961) Elementare Wellenmechanik. Friedr. Vieweg & Sohn, Braunschweig.

[12]   Haken, H. and Wolf, H.C. (2006) Molekülphysik und Quantenchemie. Springer.

[13]   Allmendinger, T. (2018) The Atom Model of Helium and of Neon Based on the Theorem of Niels Bohr. Journal of Applied Mathematics and Physics, 6, 1290-1300.

[14]   Allmendinger, T. (2016) The Thermal Behaviour of Gases under the Influence of Infrared-Radiation. International Journal of Physical Sciences, 11, 183-205.