Back
 JWARP  Vol.11 No.1 , January 2019
Adsorption Study of Acid Red 114 and Basic Blue 3 on Sunflower Stalk
Abstract: The aim of this work was to evaluate the sunflower stalk (SS) as an adsorbent in the removal of red acid 114 (AR 114) and basic blue 3 (BB 3) in aqueous solutions, without any physicochemical treatment, where temperature and concentration were the studied variables. The research was developed by using the batch processing mode; the contact time was one hour, with constant agitation of 200 rpm and pH of 7000 ± 0.050, using a central composite design. The adsorbent was characterized through BET, SEM, acid sites and basic sites, charging point, and infrared. The results indicated that the sunflower stalk was a viable and economical alternative for the removal of water that had been contaminated by dyes, showing a better performance for the AR 114 dye, reaching a 71.96% of removal with respect to the initial load. In addition, the EPI Web software was used to model the environmental performance of colorants.
Cite this paper: Montes-Alba, E. , Camargo-Vargas, G. , Agudelo-Valencia, R. and Dévora-Isiordia, G. (2019) Adsorption Study of Acid Red 114 and Basic Blue 3 on Sunflower Stalk. Journal of Water Resource and Protection, 11, 68-81. doi: 10.4236/jwarp.2019.111005.
References

[1]   Keith, K.H., et al. (1999) Sorption of Acid Dyes from Effluents Using Activated Carbon. Resources, Conservation and Recycling, 27, 57-71.
https://doi.org/10.1016/S0921-3449(98)00085-8

[2]   Ramos, J. (2010) Estudio del proceso de biosorción de colorantes sobre borra (Cuncho) de café. Trabajo de grado. Maestría en Ciencia-Química, Universidad Nacional de Colombia, Bogotá, 1-65.

[3]   Broadbent, A.D. (2001) Basic Principles of Textile Coloration. Society of Dyers and Colourists, Bradford, 26.

[4]   Odintsova, I.O., Krotova, M.N. and Mel’nikov, B.N. (2009) Use of Cationic Agents for Fixing Coloration of Textile Materials. Russian Journal of Applied Chemistry, 82, 461-465.
https://doi.org/10.1134/S1070427209030215

[5]   Mohan, N., Balasubramanian, N. and Basha, C.A. (2007) Electrochemical Oxidation of Textile Wastewater and Its Reuse. Journal of Hazardous Materials, 147, 644-651.
https://doi.org/10.1016/j.jhazmat.2007.01.063

[6]   Society of Dyers and Colourists Classification of Dyes.
http://dyes-pigments.standardcon.com/what-is-dye.html

[7]   Suryavathi, V., et al. (2005) Acute Toxicity of Textile Dye Wastewaters (Untreated and Treated) of Sanganer on Male Reproductive Systems of Albino Rats and Mice. Reproductive Toxicology, 19, 547-556.
https://doi.org/10.1016/j.reprotox.2004.09.011

[8]   Verma, Y. (2008) Acute Toxicity Assessment of Textile Dyes and Textile and Dye Industrial Effluents Using Daphnia Magna Bioassay. Toxicology and Industrial Health, 24, 491-500.
https://doi.org/10.1177/0748233708095769

[9]   Riva, C., et al. (1988) Biodegradabilidad, toxicidad y acumulación del colorante acido azul omegacromo en la trucha arco iris “Salmo gairdneri”. Boletin Intextar, 1, 55-70.

[10]   Ministerio de medio ambiente, dirección general de calidad y evaluación ambiental (2004) Guía de Mejores Técnicas Disponibles en España del sector textil. Centro de Publicaciones Secretaria General Técnica Ministerio de Mediop, España, 39.

[11]   Robinson, T., et al. (2001) Remediation of Dyes in Textile Effluent: A Critical Review on Current Treatment Technologies with a Proposed Alternative. Bioresourse Tecnology, 77, 274-255.
https://doi.org/10.1016/S0960-8524(00)00080-8

[12]   Dévora-Isiordia, G.E., González, R. and Ruiz, S. (2013) Evaluación de procesos de desalinización y su desarrollo en México. Tecnología y Ciencias del Agua, 4, 27-46.

[13]   Dévora-Isiordia, G. E., Robles Lizárraga, A., Fimbres Weihs, G.A. and álvarez Sánchez, J. (2017) Comparación de métodos de descarga para vertidos de salmueras, provenientes de una planta desalinizadora en Sonora, México. Revista Internacional de Contaminación Ambiental, 33, 45-54.
https://doi.org/10.20937/RICA.2017.33.esp02.04

[14]   Osma, J.F., et al. (2007) Sunflower Seed Shells: A Novel and Effective Low-Cost Adsorbent for Removal of Diazo Dye Reactive Black 5 from Aqueous Solutions. Journal of Hazardous Materials, 147, 900-905.
https://doi.org/10.1016/j.jhazmat.2007.01.112

[15]   Crini, G. (2006) Non-Conventional Low-Cost Adsorbents for Dyes Removal: A Review. Bioresource Technology, 97, 1061-1085.

[16]   Thinakaran, N., et al. (2008) Removal of Acid Violet 17 from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Sunflower Seed Hull. Journal of Hazardous Materials, 151, 316-322.
https://doi.org/10.1016/j.jhazmat.2007.05.076

[17]   Thinakaran, N., et al. (2008) Equilibrium and Kinetic Studies in the Removal of Acid Red 114 from Aqueous Solutions Using Activated Carbons Prepared from Seed Shells. Journal of Hazardous Materials, 158, 142-150.
https://doi.org/10.1016/j.jhazmat.2008.01.043

[18]   Arvanitoyannis, I.S. and Varzakas, T.H. (2008) Vegetable Waste Management: Treatment Methods and Potential Uses of Treated Waste. Waste Management for the Food Industries. Elsevier Inc., New York, 703-761.

[19]   Ministerio de agricultura y desarrollo rural, observatorio agrocadenas colombia (2005) La cadena de las oleaginosas en Colombia. Bogotá, 12.

[20]   Roman, S., et al. (2013) Production of Low-Cost Adsorbents with Tunable Surface Chemistry by Conjunction of Hydrothermal Carbonization and Activation Processes. Microporous and Mesoporous Materials, 165, 127-133.

[21]   Jain, M., Gark, V.K., Kadirvelu, K. and Sillampa, M. (2016) Adsorption of Heavy Metals from Multi-Metal Aqueous Solution by Sunflower Plant Biomass-Based Carbons. International Journal of Environmental Science and Technology, 13, 493-500.
https://doi.org/10.1007/s13762-015-0855-5

[22]   Jain, M., Gark, V.K. and Kadirvelu, K. (2009) Chromium (VI) Removal from Aqueous System Using Helianthus annuus (Sunflower) Stem Waste. Journal of Hazardous Materials, 162, 365-372.
https://doi.org/10.1016/j.jhazmat.2008.05.048

[23]   Boehm, H.-P. (2008) Chapter Thirteen: Surface Chemical Characterization of Carbon from Adsorption Studies. In: Adsorption by Carbons, Elsevier Ltd., New York, 301-323.

[24]   Duong, D. (1998) Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, Vol. 2, 11.

[25]   Agudelo, N. and Husserl, J. (2013) Evaluación de la remoción de sales disueltas presentes en agua de producción sintética por medio del uso de fibras de Furcraea bedinghausii (fique) modificadas químicamente. Trabajo de grado, Maestría en Ingeniería Ambiental. Universidad de los Andes, Bogotá.

[26]   Leyva, R. (2007) Importancia y aplicaciones de la adsorción en fase liquida. In: Moreno, J.C., Ed., Sólidos porosos, preparación, caracterización y aplicaciones, EdicionesUniandes, 157-168.

[27]   Srivastava, S. and Goyal, P. (2010) Novel Biomaterials, Decontamination of Toxic Metals from Wastewater. Springer-Verlag, Berlin, Heidelberg.

[28]   Allen, S.J., et al. (2005) Kinetic Modeling of the Adsorption of Basic Dyes by Kudzu. Journal of Colloid and Interfase Science, 286, 101-109.
https://doi.org/10.1016/j.jcis.2004.12.043

[29]   Bhatnagar, A. and Sillanppa, M. (2010) Utilization of Agro-Industrial and Municipal Waste Materials as Potencial Adsorbents for Water Treatment—A Review. Chemical Engineering Journal, 157, 277-296.
https://doi.org/10.1016/j.cej.2010.01.007

[30]   Allen, D. (2001) Green Engineering: Environmentally Conscious Design of Chemical Processes. Pearson Education, London.
https://doi.org/10.1002/aic.690470902

 
 
Top