OJD  Vol.8 No.1 , February 2019
Functional Change of Brain Serotonergic Activity and Free Tryptophan in the Plasma of Depressed Women
Abstract: The main objective was to show the decrement of serotoninergic brain activity in depressed women, through the analyses of the slope amplitude of N1/P2 components of the auditory-evoked potentials (AEP), and the measurement of the L-tryptophan free fraction in plasma (FFT). This cross-sectional study was carried out in 60 women, 30 depressed and 30 normal controls. Both groups were measured FFT, glucose, and neutral amino acids (NAA) levels; besides performing AEP to analyses the N1/P2 slope amplitude. It was found a lengthening in the slope amplitude of N1/P2 components of AEP in the group of depressed women, and despite that the level of FFT was low, there were no changes between bound fraction and the total L-Trp. The former suggests a decrease in serotonergic brain activity in the group of depressed women. Otherwise, since the auditory cortex response to sound is regulated by serotonergic innervation, it was expected a change in the behavior of AEP in the group of depressed patients. Thus, the slope amplitude of N1/P2 components of the AEP and the measurement of FFT have proved to be a good clinical indicators of the serotonergic neurotransmission state in the brain of depressed patients, and in another clinical conditions where brain serotonin is involved.
Cite this paper: Vázquez-Estupiñan, F. , Herrera-Márquez, R. , Mondragón-Herrera, J. , Lara-Pérez, G. and Manjarrez-Gutiérrez, G. (2019) Functional Change of Brain Serotonergic Activity and Free Tryptophan in the Plasma of Depressed Women. Open Journal of Depression, 8, 5-15. doi: 10.4236/ojd.2019.81002.

[1]   Akiskal, H. S. (2000). Mood Disordes: Introduction and Overwiew. In B. J. Sadock, & V. A. Sadock (Eds.), Comprehensive Textbook of Psychiatry (pp. 1284-1298). New York: Lippincott, Williams & Wilkins.

[2]   American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders: DSM-IV (4th ed.). Washington DC: American Psychiatric Association.

[3]   Badawy, A. A. (1977). The Functions and Regulation of Tryptophan Pyrrolase. Life Sciences, 21, 755-768.

[4]   Banki, C. M., Molnar, G., & Vojnik, M. (1981). Cerebrospinal Fluid Amine Metabolites, Tryptophan and Clinical Parameters in Depression: Part 2. Psychopathological Symptoms. Journal of Affective Disorders, 3, 91-99.

[5]   Bentley, R. (1963). Glucose Oxidase in the Enzymes. In P. D. Boyer (Ed.), The Enzymes (pp. 567-586). New York: Academic Press.

[6]   Berenzon, S., Lara, M. A., Robles, R. et al. (2013). Depresión: Estado del conocimiento y las necesidades políticas públicas y planes de acción en México. Salud Pública de México, 55, 74-80.

[7]   Berhan, A., & Barker, A. (2014). Vortioxetine in the Treatment of Adult Patients with Major Depressive Disorder: A Meta-Analysis of Randomized Double-Blind Controlled trials. BMC Psychiatry, 14, 276.

[8]   Blazer, D. G. (2000). Mood Disorders: Epidemiology. In B. J. Sadoc, & V. A. Sadock (Eds.), Comprehensive Textbook of Psychiatry (pp. 1298-1308). New York: Lippincott, Williams & Wilkins.

[9]   Carr, G. V., & Lucki, I. (2011). The Role of Serotonin Receptor Sybtypes in Treating Depression: A Review of Animal Studies. Psychopharmacology, 213, 265-287.

[10]   Cole, R. A., Soeldner, J. S., Dunn, P. J. et al. (1978). A Rapid Method for the Determination of Glycosylated Hemoglobin Using High-Pressure Liquid Chromatography. Metabolism, 27, 289-301.

[11]   Doumas, B. T., Watson, W. A., & Biggs, H. G. (1971). Albumin Standards the Measurement of Serum Albumin with Bromocresol Green. Clinica Chimica Acta, 31, 87-96.

[12]   Dunlop, B. W., & Nemeroff, C. B. (2007). The Role of Dopamine in the Pathophysiology of Depression. Archives of General Psychiatry, 64, 327-337.

[13]   Ehlers, C. L., Wall, T. L., & Chaplin, R. I. (1991). Long Latency Event-Related Potentials in Rats: Effects of Dopaminergic and Serotonergic Depletions. Pharmacology Biochemistry and Behavior, 38, 789-793.

[14]   Einarsson, S., Josefsson, B., & Lagerkvist, S. (1983). Determination of Amino Acids with 9-Fluronylmethylcholoroformate and Reversed-Phase High-Performance Liquid Chromatography. Journal of Chromatography A, 282, 609-618.

[15]   Ferrier, I. N., McKeith, I. G., Cross, A. J. et al. (1986). Postmortem Neurochemical Studies in Depression. Annals of the New York Academy of Sciences, 487, 128-142.

[16]   Gijsman, H. J., Geddes, J. R., Rendell, J. M. et al. (2004). Antidepressants for Bipolar Depression: A Systematic Review of Randomized, Controlled Trials. American Journal of Psychiatry, 161, 1537-1547.

[17]   Hegerl, U., & Juckel, G. (1993). Intensity Dependence of Auditory Evoked Potentials as an Indicator of Central Serotonergic Neurotransmission. A New Hypothesis. Biological Psychiatry, 33, 173-187.

[18]   Jacobs, B. L., & Azmitia, E. C. (1992). Structure and Function of the Brain Serotonin System. Physiological Reviews, 72, 165-229.

[19]   Jedynak, P., Jaholkowski, R. K., & Filipkowski, K. R. (2007). Adult Neurogenesis and Depression. Neuropsychiatria i Neuropsychologia, 2, 57-65.

[20]   Juckel, G., Molnár, M., Hegerl, U. et al. (1997). Auditory-Evoked Potentials as Indicator of Brain Serotonergic Activity—First Evidence in Behaving Cats. Biological Psychiatry, 41, 1181-1195.

[21]   Kessler, R. C., & Bromet, E. J. (2013). The Epidemiology of Depression across Cultures. Annual Review of Public Health, 34, 119-138.

[22]   Lohoff, F. W. (2010). Overview of the Genetics of Major Depressive Disorder. Current Psychiatry Reports, 12, 539-546.

[23]   López, J. F., Chalmers, D. T., Little, K. Y. et al. (1998). A.E. Bennett Research Award. Regulation of Serotonin 1A, Glucocorticoid, and Mineralocorticoid Receptor in Rat and Human Hippocampus: Implications for the Neurobiology of Depression. Biological Psychiatry, 43, 547-573.

[24]   Manjarrez, G., Cisneros, I., Herrera, R. et al. (2005a). Prenatal Impairment of Brain Serotonergic Transmission in Infants. The Journal of Pediatrics, 147, 592-596.

[25]   Manjarrez, G., Hernandez, E., Robles, A. et al. (2005b). N1/P2 Component of Auditory Evoked Potential Reflect Changes of the Brain Serotonin Biosynthesis in Rats. Nutritional Neuroscience, 8, 213-218.

[26]   Manjarrez, G., Hernandez, Z. E., Robles, O. A. et al. (2001). Developmental Impairment of Auditory Evoked N1/P2 Component in Rats Undernourished in Utero: Its Relation to Brain Serotonin Activity. Brain Research. Developmental Brain Research, 127, 149-155.

[27]   Manjarrez, G., Herrera, R., León, M. et al. (2006). A Low Brain Serotonergic Neurotransmission in Children with Type 1 Diabetes Detected through the Intensity Dependence of Auditory Evoked Potentials. Diabetes Care, 29, 73-77.

[28]   Manjarrez, G., Vazquez, F., Delgado, M. et al. (2007). A Functional Disturbance in the Auditory Cortex Related to a Low Serotonergic Neurotransmission in Women with Type 2 Diabetes. Neuroendocrinology, 86, 289-294.

[29]   Manjarrez-Gutierrez, G., Herrera, R. H., Mejenes-Alavarez, S. A. et al. (2009). Functional Change of the Auditory Cortex Related to the Brain Serotonergic Neurotransmission in Type 1 Diabetic Adolescents with and without Depression. The World Journal of Biological Psychiatry, 10, 877-883.

[30]   Manjarrez-Gutierrez, G., Ramirez-Campillo, R., Borrayo-Sanchez, G. et al. (2013). Disturbance of Serotonergic Neurotransmission in Patients with Postmyocardial Infarction and Depression. Metabolic Brain Disease, 28, 15-20.

[31]   Mann, J. J. (1999). Role of the Serotonergic System in the Pathogenesis of Major Depression and Suicidal Behavior. Neuropsychopharmacology, 21, 99S-105S.

[32]   Margoob, M. A., Mushtaq, D., Murtza, I. et al. (2008). Serotonin Transporter Gene Polymorphism and Treatment Response to Serotonin Reuptake Inhibitor (Escitalopram) in Depression. An Open Pilot Study. Indian Journal of Psychiatry, 50, 47-50.

[33]   McNally, L., Bhagwagar, Z., & Hannestad, J. (2008). Inflammation, Glutamate, and Glia in Depression. A Literature Review. CNS Spectrums, 13, 501-510.

[34]   Medina-Mora, M. E., Borges, G., Lara, C. et al. (2005). Prevalence, Service Use, and Demographic Correlates of 12-Month DSM-IV Psychiatric Disorders in Mexico: Results from the Mexican National Comorbidity Survey. Psychological Medicine, 35, 1773-1783.

[35]   Meltzer, H. Y. (1990). Role of Serotonin in Depression. Annals of the New York Academy of Sciences, 600, 486-499.

[36]   Morrissette, D. A., & Stahl, S. M. (2014). Modulating the Serotonin System in the Treatment of Major Depressive Disorder. CNS Spectrums, 1, 57-67.

[37]   Nagayama, H., Tsuchiyama, K., Yamada, K. et al. (1991). Animal Study on the Role of Serotonin in Depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 15, 735-744.

[38]   Nestler, E. J., Barrot, M., DiLeone, R. J. et al. (2002). Neurobiology of Depression. Neuron, 34, 13-25.

[39]   Nutt, D. J. (2006). The Role of Dopamine and Norepinephrine in Depression and Antidepressant Treatment. Journal of Clinical Psychiatry, 67, 3-8.

[40]   Parker, K. J., Schatzberg, A. F., & Lyons, D. M. (2003). Neuroendocrine Aspects of Hypercortisolism in Major Depression. Hormones and Behavior, 43, 60-66.

[41]   Patel, A. (2013). Review: The Role of Inflammation in Depression. Psychiatria Danubina, 2, S216-S223.

[42]   Peat, M. A., & Gibb, J. W. (1983). High-Performance Liquid Chromatography Determination of Indoleamines, Dopamine, and Norepinephrine in Rat Brain with Fluorometric Detection. Analytical Biochemistry, 128, 275-280.

[43]   Pehrson, A. L., & Sanchez, C. (2014). Serotonergic Modulation of Glutamate Neurotransmission as a Strategy for Treating Depression and Cognitive Dysfunction. CNS Spectrums, 19, 121-133.

[44]   Semple, M. N., & Scott, B. H. (2003). Cortical Mechanism in Hearing. Current Opinion in Neurobiology, 13, 167-173.

[45]   Stanley, M., Traskman-Bendz, L., & Dorovini-Zis, K. (1985). Correlations between Aminergic Metabolites Simultaneously Obtained from Human CFS and Brain. Life Sciences, 37, 1279-1286.

[46]   Stockmeier, C. A., Dailley, G. E., Shapiro, L. A. et al. (1997). Serotonin Receptor in Suicide Victims with Major Depression. Neuropsychopharmacology, 16, 162-173.

[47]   Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic Epidemiology of Major Depression: Review and Meta-Analysis. American Journal of Psychiatry, 157, 1552-1562.

[48]   Von Knorring, L., Monakhov, K., & Perris, C. (1978). Augmenting/Reducing: An Adaptive Switch Mechanism to Cope with Incoming Signals in Healthy Subjects and Psychiatric Patients. Neuropsychobiology, 4, 150-179.

[49]   Wagner, A. F., González, F. C., Sánchez, G. S. et al. (2012). Enfocando la depresión como problema de salud pública en México. La Salud Mental, 35, 3-11.

[50]   Zhou, F., & Hablitz, J. J. (1999). Activation of Serotonin Receptors Modulates Synaptic Transmission in Rat Cerebral Cortex. Journal of Neurophysiology, 82, 2989-2999.