Back
 AJAC  Vol.2 No.8 , December 2011
Some Physicochemical and Thermal Studies on Organic Analog of a Nonmetal-Nonmetal Monotectic Alloy; 2-Cyanoacetamide–4-chloronitrobenzene System
Abstract: The phase equilibrium data on organic analog of the nonmetal-nonmetal system, involving 2-cyanoacetamide (CA)―4-chloronitrobenzene (CNB), show the formation of a monotectic (0.10 mole fraction of CNB) and a eutectic (0.98 mole fraction of CNB) with a large miscibility gap starting from 0.10 mole fraction of CNB of monotectic (M) and ending at 0.92 mole fraction of CNB of monotectic horizontal (Mh); the upper consolute temperature Tc being 63?C above the monotectic horizontal at 118?C and eutectic temperature is at 85?C. The values of enthalpy of fusion of the pure components, the eutectic and the monotectic were determined by the differential scanning calorimetry (Mettler DSC-4000 system). Using these data, the size of the critical radius, interfacial energy, excess thermodynamic functions, entropy of fusion, and enthalpy of mixing were calcu-lated. The solid-liquid interfacial energy data confirm the applicability of the Cahn wetting condition. While growth data obey the Hillig-Turnbull equation, the microstructural investigations give typical characteristic features of the eutectic and the monotectic of the system.
Cite this paper: nullM. Singh, R. Rai and U. Rai, "Some Physicochemical and Thermal Studies on Organic Analog of a Nonmetal-Nonmetal Monotectic Alloy; 2-Cyanoacetamide–4-chloronitrobenzene System," American Journal of Analytical Chemistry, Vol. 2 No. 8, 2011, pp. 953-961. doi: 10.4236/ajac.2011.28111.
References

[1]   D. M. Herlach, R. F. Cochrane, I. Egry, H. J. Fecht and A. L. Greer, “Containerless Processing in the Study of Metallic Melts and Their Solidification,” International Materials Reviews, Vol. 38, No. 6, 1993, pp. 273-347.

[2]   H. Tang, L. C. Wrobel and Z. Fan, “Hydrodynamic Analysis of Binary Immiscible Metallurgical Flow in a Novel Mixing Process: Rheomixing,” Applied Physics A: Materials Science & Processing, Vol. 81, No. 3, 2005, pp. 549-559. doi:10.1007/s00339-004-2638-6

[3]   R. Trivedi and W. Kurz, “Dendritic Growth,” International Materials Reviews, Vol. 39, No. 2, 1994, pp. 49-74.

[4]   B. Majumdar and K. Chattopadhyay, “Aligned Monotectic Growth in Unidirectionally Solidified Zn-Bi Alloys,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 31A, No. 7, 2000, pp. 1833-1842. doi:10.1007/s11661-006-0245-1

[5]   M. E. Glicksman, N. B. Singh and M. Chopra, “Gravitational Effects in Dendritic Growth,” Manufacturing in Space, Vol. 11, 1983, pp. 207-218.

[6]   H. Yasuda, I. Ohnaka, Y. Matsunaga and Y. Shiohara, “In-Situ Observation of Peritectic Growth with Faceted Interface,” Journal of Crystal Growth, Vol. 158, No. 1-2, 1996, pp. 128-135. doi:10.1016/0022-0248(95)00420-3

[7]   K. Pigon and A. Krajewska, “Phase Diagrams in the Binary Systems of 2,4,7-Rinitrofluoren-9-one with Aromatic and Heteroaromatic Compounds. II, Thermodynamic Analysis,” Thermochim Acta, Vol. 58, No. 3, 1982, pp. 299-309. doi:10.1016/0040-6031(82)87104-9

[8]   S. Akbulut, Y. Ocak, U. Boyiik, K. Keslioglu and N. Marash, “Measurement of Solid-Liquid Interfacial Energy in the Pyrene Succinonitrile Monotectic System,” Journal of Physics: Condensed Matter, Vol. 18, No. 37, 2006, pp. 8403-8412. doi:10.1088/0953-8984/18/37/001

[9]   J. P. Farges, “Organic Conductors,” Marcel Dekker, New York, 1994.

[10]   P. Gunter, “Nonlinear Optical Effects and Materials,” Springer-Verlag, Berlin, 2000.

[11]   N. B. Singh, T. Henningsen, R. H. Hopkins, R. Mazelsky, R. D. Hamacher, E. P. Supertzi, F. K. Hopkins, D. E. Zelmon and O. P. Singh, “Nonlinear Optical Characteristics of Binary Organic System,” Journal of Crystal Growth, Vol. 128, No. 1-4, 1993, pp. 976-980. doi:10.1016/S0022-0248(07)80081-9

[12]   M. A. Savas, H. Erturan and S. Altintas, “Effects of Squeeze Casting on the Properties of Zn-Bi Monotectic Alloy,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 28A, No. 7, 1997, pp. 1509-1515. doi:10.1007/s11661-997-0213-4

[13]   K. A. Jackson and J. D. Hunt, “Lamellar and Rod Eutectic Growth,” Transactions of the Metallurgical Society of AIME, Vol. 236, 1966, pp. 1129-1142.

[14]   J. W. Cahn, “Monotectic Composite Growth,” Metallurgical Transactions A: Physical Metallurgy and Materials Science, Vol. 10A, No. 1, 1979, pp. 119-121. doi:10.1007/BF02686415

[15]   G. A. Chadwick, “Mettalography of Phase Transformation,” Butterworths, London, 1972.

[16]   R. N. Grugel and A. Hellawell, “Alloy Solidification in Systems Containing a Liquid Miscibility Gap,” Metallurgical Transactions A: Physical Metallurgy and Materials Science, Vol. 12, No. 4, 1981, pp. 669-681. doi:10.1007/BF02649742

[17]   N. B. Singh, U. S. Rai and O. P. Singh, “Chemistry of Eutectic and Monotectic; Phenanthrene-Succinonitrile System,” Journal of Crystal Growth, Vol. 71, No. 2, 1985, pp. 353-360. doi:10.1016/0022-0248(85)90091-0

[18]   W. F. Kaukler and D. O. Frzier, “Crystallization Microstructure in Transparent Monotectic Alloys,” Nature (London, United Kingdom), Vol. 323, 1986, pp. 50-52. doi:10.1038/323050a0

[19]   H. Song and A. Hellawell, “The Growth of Tubular or Vermicular Structures in Organic Monotectic Systems,” Metallurgical Transactions A: Physical Metallurgy and Materials Science, Vol. 20A, No. 1, 1989, pp. 171-177. doi:10.1007/BF02647504

[20]   G. F. V. Voort, “Binary Phase Diagrams and Microstructures,” Materials Characterization, Vol. 41, No. 2, 1998, pp. 69-79.

[21]   B. Predel, “Constitution and Thermodynamics of Monotectic Alloys―A Survey,” Journal of Phase Equilibria, Vol. 18, No. 4, 1997, pp. 327-337.

[22]   B. Majumdar and K. Chattopadhyay, “The Rayleigh Instability and the Origin of Rows of Droplets in the Monotectic Microstructure of Zinc-Bismuth Alloys,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 27A, No. 7, 1996, pp. 2053-2057. doi:10.1007/BF02651956

[23]   P. Gupta, T. Agrawal, S. S. Das and N. B. Singh, “Solvent Free Reactions, Reactions of Nitrophenols in 8-Hydroxyquinoline-Benzoic Acid Eutectic Melt,” Journal of Thermal Analysis and Calorimetry, Vol. 104, No. 3, 2011, pp. 1167-1176.

[24]   J. W. Rice, J. Fu and E. M. Suuberg, “Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character,” Journal of Chemical & Engineering Data, Vol. 55, No. 9, 2010, pp. 3598-3605. doi:10.1021/je100208e

[25]   C. A. Peters, K. H. Wammer and C. D. Knightes, “Multicomponent NAPL Solidification Thermodynamics,” Transport in Porous Media, Vol. 38, No. 1-2, 2000, pp. 57-77. doi:10.1023/A:1006615301396

[26]   R. N. Rai, S. R. Mudunuri, R. S. B. Reddi, V. S. A. Kumar Satuluri, S. Ganesamoorthy and P. K. Gupta, “Crystal Growth and Nonlinear Optical Studies of M-Dinitrobenzene Doped Urea,” Journal of Crystal Growth, Vol. 321, No. 1, 2011, pp. 72-77. doi:10.1016/j.jcrysgro.2011.02.019

[27]   S. Kant, R. S. B. Reddi and R. N. Rai, “Solid-Liquid Equilibrium, Thermal, Crystallization and Microstructural Studies of Organic Monotectic Alloy,” Fluid Phase Equilibria, Vol. 291, No. 1, 2010, pp. 71-75. doi:10.1016/j.fluid.2009.12.015

[28]   B. Derby and J. J. Favier, “A Criterion for the Determination of Monotectic Structure,” Acta Metallurgica, Vol. 31, No. 7, 1983, pp. 1123-1130. doi:10.1016/0001-6160(83)90208-0

[29]   A. Ecker, D. O. Frazier and J. I. D. Alexander, “Fluid Flow in Solidifying Monotectic Alloys,” Metallurgical Transactions A: Physical Metallurgy and Materials Science, Vol. 20A, No. 11, 1989, pp. 2517-2527. doi:10.1007/BF02666686

[30]   J. A. Dean, “Lange’s Handbook of Chemistry,” McGraw-Hill, New York, 1985.

[31]   U. S. Rai and R. N. Rai, “Studies on Physicochemical Properties of the Eutectic and Monotectic in the Urea-P. Chloronitrobenzene System,” Journal of Crystal Growth, Vol. 169, No. 3, 1996, pp. 563-569. doi:10.1016/S0022-0248(96)00448-4

[32]   S. Chaubey, K. S. Dubey and P. R. Rao, “Aluminum-Cadmium Binary Alloy Phase Diagram,” Journal of Alloy Phase Diagram, Vol. 6, 1990, pp. 153-157.

[33]   R. N. Rai, “Phase Diagram, Optical, Nonlinear Optical, and Physicochemical Studies of the Organic Monotectic System: Pentachloropyridine-Succinonitrile,” Journal of Materials Research, Vol. 99, No. 5, 2004, pp. 1348-1355. doi:10.1557/JMR.2004.0181

[34]   U. S. Rai and R. N. Rai, “Physical Chemistry of Organic Eutectics,” Journal of Thermal Analysis and Calorimetry, Vol. 53, No. 3, 1998, pp. 883-893. doi:10.1023/A:1010190402954

[35]   W. B. Hillig and D. Turnbull, “Theory of Crystal Growth in Undercooled Pure Liquids,” Journal of Chemical Physics, Vol. 24, No. 4, 1956, p. 914. doi:10.1063/1.1742646

[36]   D. A. Porter and K. E. Easterling, “Phase Transformation in Metals and Aollys,” Vokingham (U. K) co. Ltd., Reading, 1982.

[37]   W. C. Winegard, S. Majka, B. M. Thall and B. Chalmers, “Eutectic Solidification in Metals,” Canadian Journal of Chemistry, Vol. 29, No. 4, 1951, pp. 320-327. doi:10.1139/v51-037

[38]   R. N. Rai and U. S. Rai, “Solid-Liquid Equilibrium and Thermochemical Properties of Organic Eutectic in a Monotectic System,” Thermochimica Acta, Vol. 363, No. 1-2, 2000, pp. 23-28. doi:10.1016/S0040-6031(00)00625-0

[39]   U. S. Rai and R. N. Rai, “Physical Chemistry of the Organic Analog of Metal-Metal Eutectic and Monotectic Alloys,” Journal of Crystal Growth, Vol. 191, No. 1-2, 1998, pp. 234-242. doi:10.1016/S0022-0248(98)00105-5

[40]   N. Singh, N. B. Singh, U. S. Rai and O. P. Singh, “Structure of Eutectic Melts; Binding Organic Systems,” Thermochimica Acta, Vol. 95, No. 1, 1985, pp. 291-293. doi:10.1016/0040-6031(85)80059-9

[41]   J. W. Christian, “The Theory of Phase Transformation in Metals and Alloys,” Pergamon Press, Oxford, 1965.

[42]   R. Good, “Generalization of Theory for Estimation of Interfacial Energies,” Industrial & Engineering Chemistry, Vol. 62, No. 3, 1970, pp. 54-78. doi:10.1021/ie50723a009

[43]   J. D. Hunt and K. A. Jackson, “Binary Eutectic Solidification,” Transactions of the Metallurgical Society of AIME, Vol. 236, No. 6, 1966, pp. 843-852.

[44]   U. S. Rai and P. Panday, “Solidification and Thermal Behaviour of Binary Organic Eutectic and Monotectic; Succinonitrile-Pyrene System,” Journal of Crystal Growth, Vol. 249, No. 1-2, 2003, pp. 301-308. doi:10.1016/S0022-0248(02)01906-1

[45]   R. N. Rai, U. S. Rai and K. B. R. Varma, “Thermal, Miscibility Gap and Microstructural Studies of Organic Analog of Metal-Nonmetal System: P-Dibromobenzene-Succinonitrile,” Thermochimica Acta, Vol. 387, No. 2, 2002, pp. 101-107. doi:10.1016/S0040-6031(01)00833-4

 
 
Top