AS  Vol.10 No.1 , January 2019
Farmers’ Perception of Soil Erosion and Adoption of Soil Conservation Technologies at Geshy Sub-Catchment, Gojeb River Catchment, Ethiopia
Abstract: The study was conducted to investigate farmers’ perception of soil erosion, participation and adoption of soil conservation technologies (SWC) in Geshy sub-catchment of Gojeb river catchment, Omo-Gibe basin, Ethiopia during 2016. The study is based on a detailed survey of 77 households using structured interviews, field observation and focus group discussion. Descriptive and chi-square statistics were applied to analyze factors that affected farmers’ perceived soil erosion severity, participation and adoption options. The results revealed that about 79% of farmers perceived soil erosion problem and its consequences and 97.4% of them believed that it can be controlled. Almost all (97.4%) farmers acknowledged the presence of SWC technologies and about 92.2% of them were participated in conservation activities voluntarily. Thus, 93.5% of them realized decreasing rate of soil erosion and 79.9% of them observed an increasing trend in soil fertility status. Consequently, 94.8% of them confirmed the potential of SWC technologies to halt land degradation and improve land productivity. Furthermore, 98.7% of them were willing to adopt with very good adoption judgment and 94.8% of them were willing to continue maintaining constructed technologies in the future. Principally, farmers’ perception of soil erosion, their genuine participation derived from their conviction, and adoption of induced SWC technologies are the decisive elements for the success of watershed management interventions.
Cite this paper: Alemu, M. , Kebede, A. and Moges, A. (2019) Farmers’ Perception of Soil Erosion and Adoption of Soil Conservation Technologies at Geshy Sub-Catchment, Gojeb River Catchment, Ethiopia. Agricultural Sciences, 10, 46-65. doi: 10.4236/as.2019.101005.

[1]   Omuto, C.T., Balint, Z. and Alim, M.S. (2014) A Framework for National Assessment of Land Degradation in the Drylands: A Case Study of Somalia. Land Degradation and Development, 25, 105-119.

[2]   Ezeaku, P.I. and Davidson, A. (2008) Analytical Situations of Land Degradation and Sustainable Management Strategies in Africa. Journal of Agriculture and Social Sciences, 4, 42-52.

[3]   Torres, L., Abraham, E.M., Rubio, C., Barbero-Sierra, C. and Ruiz-Pérez M. (2015) Desertification Research in Argentina. Land Degradation and Development, 26, 433-440.

[4]   Xie, L.W., Zhong, J., Chen, F.F., Cao, F.X., Li, J.J. and Wu L.C. (2015) Evaluation of Soil Fertility in the Succession of Karst Rocky Desertification Using Principal Component Analysis. Solid Earth, 6, 515-524.

[5]   Stringer, L.C. and Dougill, A.J. (2013) Channelling Science into Policy: Enabling Best Practices from Research on Land Degradation and Sustainable Land Management in Dryland Africa. Journal of Environmental Management, 114, 328-335.

[6]   Reed, M. and Stringer, L. (2016) Land Degradation, Desertification and Climate Change: Anticipating, Assessing and Adapting to Future Change. Routledge, London.

[7]   Assefa, E. and Hans-Rudolf, B. (2016) Farmers’ Perception of Land Degradation and Traditional Knowledge in Southern Ethiopia-Resilience and Stability. Land Degradation and Development, 27, 1552-1561.

[8]   Nigussie, Z., Tsunekawa, A., Haregeweyn, N., Adgo, E., Nohmi, M., Tsubo, M., Aklog, D., Meshesha, D.T. and Abele, S. (2017) Farmers’ Perception about Soil Erosion in Ethiopia. Land Degradation and Development, 28, 401-411.

[9]   Moges, A. and Holden, N.M. (2007) Farmers’ Perception of Soil Erosion and Soil Fertility Loss in Southern Ethiopia. Land Degradation and Development, 18, 543-554.

[10]   Pulido, J. and Bocco, G. (2014) Local Perception of Land Degradation in Developing Countries: A Simplified Analytical Framework of Driving Forces, Processes, Indicators and Coping Strategies. Living Reviews in Landscape Research, 8, 4.

[11]   Gessesse, B., Bewket, W. and Bräuning, A. (2016) Determinants of Farmers’ Tree-Planting Investment Decisions as a Degraded Landscape Management Strategy in the Central Highlands of Ethiopia. Solid Earth, 7, 639-650.

[12]   Shiferaw, B. and Holden, S.T. (2000). Policy Instruments for Sustainable Land Management: The Case of Highland in Ethiopia. Agricultural Economics, 22, 217-232.

[13]   Holden, S.T., Bekele, S. and Pender, J. (2005) Policy Analysis for Sustainable Land Management and Food Security in Ethiopia. A Bio-Economic Model with Market Imperfections Research Report 140. International Food Policy Research Institute, Washington DC.

[14]   Bewket, W. and Sterk, G. (2002) Farmer’s Participation in Soil and Water Conservation Activities in the Chemoga Watershed, Blue Nile Basin, Ethiopia. Land Degradation and Development, 13, 189-200.

[15]   Tesfaye, A., Negatu, W., Brouwer, R. and van der Zaag, P. (2014) Understanding Soil Conservation Decision of Farmers in the Gedeb Watershed, Ethiopia. Land Degradation and Development, 25, 71-79.

[16]   Haregeweyn, N., Tsunekawa, A., Nyssen, J., Poesen, J., Tsubo, M., Meshesha, D.T., Schütt, B., Adgo, E. and Tegegne, F. (2015) Soil Erosion and Conservation in Ethiopia: A Review. Progress in Physical Geography, 39, 750-774.

[17]   Hurni, K., Zeleke, G., Kassie, M., Tegegne, B., Kassawmar, T., Teferi, E., Moges, A., Tadesse, D., Ahmed, M., Degu, Y., et al. (2015) The Economics of Land Degradation. Ethiopia Case Study. Soil Degradation and Sustainable Land Management in the Rainfed Agricultural Areas of Ethiopia. Report for the Economcs of Land Degradation Initiative, 94.

[18]   Bewket, W. and Teferi, E. (2009) Assessment of Soil Erosion Hazard and Prioritization for Treatment at the Watershed Level: Case Study in the Chemoga Watershed, Blue Nile Basin, Ethiopia. Land Degradation and Development, 20, 609-622.

[19]   Gelagay, H.S. and Minale, A.S. (2016) Soil Loss Estimation Using GIS and Remote Sensing Techniques: A Case of Koga Watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4, 126-136.

[20]   Denboba, M.A. (2005) Forest Conversion—Soil Degradation—Farmers’ Perception Nexus: Implications for Sustainable Land Use in the Southwest of Ethiopia. Ecology and Development Series, No. 26, 1-149.

[21]   Tefera, B. and Sterk, G. (2010) Land Management, Erosion Problems and Soil and Water Conservation in Fincha’a Watershed, Western Ethiopia. Land Use Policy, 27, 1027-1037.

[22]   Haregeweyn, N., Tsunekawa, A., Poesen, J., Tsubo, M., Meshesha, D.T., Fenta, A.A., Nyssen, J. and Adgo, E. (2017) Comprehensive Assessment of Soil Erosion Risk for Better Land Use Planning in River Basins: Case Study of the Upper Blue Nile River. Science of the Total Environment, 574, 95-108.

[23]   Bekele, W. and Lars, D. (2003) Soil and Water Conservation Decision Behavior of Subsistence Farmers in the Eastern Highlands of Ethiopia: A Case Study of the Hunde-Lafto Area. Ecological Economics, 46, 437-451.

[24]   Amsalu, A. and de Graaff, J. (2006) Farmers’ Views of Soil Erosion Problems and Their Conservation Knowledge at Beressa Watershed, Central Highlands of Ethiopia. Agriculture and Human Values, 23, 99-108.

[25]   Bewket, W. (2007) Soil and Water Conservation Intervention with Conventional Technologies in Northwestern Highlands of Ethiopia: Acceptance and Adoption by Farmers. Land Use Policy, 24, 404-416.

[26]   Mushir, A. and Kedru, S. (2012) Soil and Water Conservation Management through Indeigenous and Traditional Practices in Ethiopa: A Case Study. Ethiopian Journal of Environmental Studies and Management, 5, 356-365.

[27]   Abebe, T. (2013) Soil Analysis, Mapping and Interpretation of the World Bank Funded 20 SLMP Watersheds of Ethiopia, Final Soil Report. Sustainable Land Management, Ministry of Agriculture, 290.

[28]   Kothari, C.R. (2004) Research Methodology: Methods & Techniques. New Age International Publishers.

[29]   IBM Corp. Released (2011) IBM SPSS Statistics for Windows (Version 20.0). IBM Corp., Armonk.

[30]   Central Statistical Agency (CSA) Federal Democratic Republic of Ethiopia (2007) The 2007 Population and Housing Census of Ethiopia, Addis Ababa.

[31]   Biratu, A.A. and Desale, K.A. (2016) Farmers’ Perception of Soil Erosion and Participation in Soil and Water Conservation Activities in the Gusha Temela Watershed, Arsi, Ethiopia. International Journal of River Basin Management, 14, 329-336.

[32]   Zegeye, A.D., Tammo, S., Steenhuis, R.W., Blake, S., Kidnau, Amy, S.C. and Dadgari, F. (2010) Assessment of Soil Erosion Processes and Farmer Perception of Land Conservation in Debre Mewi Watershed near Lake Tana, Ethiopia. Ecohydrology and Hydrobiology, 10, 297-306.

[33]   Weldemariam, D., Kebede, M., Taddesse, M. and Gebre, T. (2013) Farmers’ Perceptions’ and Participation on Mechanical Soil and Water Conservation Techniques in Kembata Tembaro Zone: The Case of Kachabirra Woreda, Ethiopia. International Journal of Advanced Structures and Geotechnical Engineering, 2, 4.

[34]   Bewket, W. (2011) Farmers’ Knowledge of Soil Erosion and Control Measures in the Northwestern Highlands of Ethiopia. African Geographical Review, 30, 53-70.

[35]   Miheretu, B.A. (2014) Farmers’ Perception and Adoption of Soil and Water Conservation Measures: The Case of Gidan Wereda, North Wello, Ethiopia. Journal of Economics and Sustainable Development, 5, 24.

[36]   Tadesse, M. and Belay, K. (2004) Factors Influencing Adoption of Soil Conservation Measures in Southern Ethiopia: The Case of Gununo Area. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 105, 49-62.

[37]   Atnafe, A.D., Husen, M.A. and Demeku, M.A. (2015) Determinants of Adopting Techniques of Soil and Water Conservation in Goromti Watershed, Western Ethiopia. Journal of Soil Science and Environmental Management, 6, 168-177.

[38]   Nyssen, J., Poesen, J. and Deckers, J. (2009) Land Degradation and Soil and Water Conservation in Tropical Highlands. Soil and Tillage Research, 103, 197-202.

[39]   Demelash, M. and Stahr, K. (2010) Assessment of Integrated Soil and Water Conservation Measures on Key Soil Properties in South Gonder, North-Western Highlands of Ethiopia. Journal of Soil Science and Environmental Management, 1, 164-176.

[40]   Kessler, C.A. (2006) Decisive Key-Factors Influencing Farm Households’ Soil and Water Conservation Investments. Applied Geography, 26, 40-60.