Back
 JBM  Vol.7 No.1 , January 2019
Mechanisms Efflux Pumps of Acinetobacter baumannii (MDR): Increasing Resistance to Antibiotics
Abstract: Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health Organization (WHO). The efflux pumps are the main cause for the increasing antibiotic resistance of A. baumannii originated from nosocomial infection. The progressive resistance of A. baumannii even on the recent drugs (tigecycline and fosfomycin) reduces to very effective antibiotic scale. With attention focused on MDR and pan-drug-resistant (PDR) in A. baumannii multiple works on efflux pumps chemical inhibitor (NMP, PAβN, omeprazole, verapamil, reserpine, CCCP) are still in progress. Certain inhibitors from plants (Biricodar and timcodar, Falvone, Mahonia, Dalea versicolor, Lycopus europaeus, and Rosmarinus officinalis) have the capability to have such compounds according to their very significant synergistic effect with antibiotics. In this review we focused on the growth of antibiotic resistance to explain the mechanism of efflux pumps into these different super families and a comprehensive understanding of the extrusion, regulation and physiology role of drug efflux pumps in the essential development of anti-resistivity drugs. We recapitulated the evolution of the work carried out in these fields during the last years and in the course of elaboration, with the aim of increasing the chances of decreasing bacterial resistivity to antibiotics.
Cite this paper: Temgoua, F. and Wu, L. (2019) Mechanisms Efflux Pumps of Acinetobacter baumannii (MDR): Increasing Resistance to Antibiotics. Journal of Biosciences and Medicines, 7, 48-70. doi: 10.4236/jbm.2019.71006.
References

[1]   Levy, S.B. (1995) Antimicrobial Resistance: A Global Perspective. Antimicrobial Resistance, 9, 1-13.
https://doi.org/10.1007/978-1-4757-9203-4_1

[2]   Adams-Haduch, J.M., Paterson, D.L., Sidjabat, H.E., Pasculle, A.W., Potoski, B.A., Muto C.A., Harrison, L.H. and Doi, Y. (2008) Genetic Basis of Multidrug Resistance in Acinetobacter baumannii Clinical Isolates at a Tertiary Medical Center in Pennsylvania. Antimicrobial Agents and Chemotherapy, 52, 3837-3843.
https://doi.org/10.1128/AAC.00570-08

[3]   Bouvet, P. and Grimont, P. (1987) Identification and Biotyping of Clinical Isolates of Acinetobacter. Annales de l’Institut Pasteur/Microbiologie, 138, 569-578.
https://doi.org/10.1016/0769-2609(87)90042-1

[4]   El-Tahawy, T.A. (2004) The Crisis of Antibiotic-Resistance in Bacteria. Saudi Medical Journal, 25, 837-842.

[5]   Blair, J.M., Webber, M.A., Baylay, A.J., Ogbolu, D.O. and Piddock, L.J. (2015) Molecular Mechanisms of Antibiotic Resistance. Nature Reviews Microbiology, 13, 42.
https://doi.org/10.1038/nrmicro3380

[6]   Pagès, J.M. and Amaral, L. (2009) Mechanisms of Drug Efflux and Strategies to Combat Them: Challenging the Efflux Pump of Gram-Negative Bacteria. Biochimica et Biophysica Acta, 1794, 826-833.
https://doi.org/10.1016/j.bbapap.2008.12.011

[7]   Kanamori, H., Parobek, C.M., Weber, D.J., Van Duin, D., Rutala, W.A., Cairns, B.A. and Juliano, J.J. (2016) Next-Generation Sequencing and Comparative Analysis of Sequential Outbreaks Caused by Multidrug-Resistant Acinetobacter baumannii at a Large Academic Burn Center. Antimicrobial Agents and Chemotherapy, 60, 1249-1257.
https://doi.org/10.1128/AAC.02014-15

[8]   Zhao, S.Y., Jiang, D.Y., Xu, P.C., Zhang, Y.K., Shi, H.F., Cao, H.L. and Wu, Q. (2015) An Investigation of Drug-Resistant Acinetobacter baumannii Infections in a Comprehensive Hospital of East China. Annals of Clinical Microbiology and Antimicrobials, 14, 7.
https://doi.org/10.1186/s12941-015-0066-4

[9]   Morris, A., Kellner, J.D. and Low, D.E. (1998) The Superbugs: Evolution, Dissemination and Fitness. Current Opinion in Microbiology, 1, 524-529.
https://doi.org/10.1016/S1369-5274(98)80084-2

[10]   Levy, S.B. (2005) Antibiotic Resistance—The Problem Intensifies. Advanced Drug Delivery Reviews, 57, 1446-1450.
https://doi.org/10.1016/j.addr.2005.04.001

[11]   Maki, D.G., Safdar, N. and Ebert, S.C. (2007) Prevalence, Consequences, and Solutions. Pharmacotherapy, 27, 1123-1134.
https://doi.org/10.1592/phco.27.10part2.121S

[12]   Croft, A.C., D'Antoni, A.V. and Terzulli, S.L. (2007) Update on the Antibacterial Resistance Crisis. Medical Science Monitor, 13, RA103-RA118.

[13]   French, G. (2010) The Continuing Crisis in Anti-biotic Resistance. International Journal of Antimicrobial Agents, 36, S3-S7.
https://doi.org/10.1016/S0924-8579(10)70003-0

[14]   Webber, M. and Piddock, L. (2003) The Importance of Efflux Pumps in Bacterial Antibiotic Resistance. Journal of Antimicrobial Chemotherapy, 51, 9-11.
https://doi.org/10.1093/jac/dkg050

[15]   Aujla, S.J., Chan, Y.R., Zheng, M., Fei, M., Askew, D.J., Pociask, D.A., Reinhart, T.A., McAllister, F., Edeal, J. and Gaus, K. (2008) IL-22 Mediates Mucosal Host Defense against Gram-Negative Bacterial Pneumonia. Nature Medicine, 14, 275-281.
https://doi.org/10.1038/nm1710

[16]   Chen, Q., Li, X., Zhou, H., Jiang, Y., Chen, Y., Hua, X. and Yu, Y. (2013) Decreased Susceptibility to Tigecycline in Acinetobacter baumannii Mediated by a Mutation in Trm Encoding SAM-Dependent Methyltransferase. Journal of Antimicrobial Chemotherapy, 69, 72-76.
https://doi.org/10.1093/jac/dkt319

[17]   Beceiro, A., Moreno, A., Fernández, N., Vallejo, J.A., Aranda, J., Adler, B., Harper, M., Boyce, J.D. and Bou, G. (2014) Biological Cost of Different Mechanisms of Colistin Resistance and Their Impact on Virulence in Acinetobacter baumannii. Antimicrobial Agents and Chemotheraphy, 58, 518-526.
https://doi.org/10.1128/AAC.01597-13

[18]   Kim, Y., Bae, I.K., Jeong, S.H., Yong, D. and Lee, K. (2015) In Vivo Selection of Pan-Drug Resistant Acinetobacter baumannii during Antibiotic Treatment. Yonsei Medical Journal, 56, 928-934.
https://doi.org/10.3349/ymj.2015.56.4.928

[19]   Chin, C.Y., Gregg, K.A., Napier, B.A., Ernst, R.K. and Weiss, D.S. (2015) A PmrB-Regulated Deacetylase Required for Lipid A Modification and Polymyxin Resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotheraphy, 59, 7911-7914.
https://doi.org/10.1128/AAC.00515-15

[20]   Li, X.Z., Plésiat, P. and Nikaido, H. (2015) The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28, 337-418.
https://doi.org/10.1128/CMR.00117-14

[21]   Zou, L., Meng, J., McDermott, P.F., Wang, F., Yang, Q., Cao, G., Hoffmann, M. and Zhao, S. (2014) Presence of Disinfectant Resistance Genes in Escherichia coli Isolated from Retail Meats in the USA. Journal of Antimicrobial Chemotherapy, 69, 2644-2649.
https://doi.org/10.1093/jac/dku197

[22]   Sun, J., Deng, Z. and Yan, A. (2014) Bacterial Multidrug Efflux Pumps: Mechanisms, Physiology and Pharmacological Exploitations. Bio-chemical and Biophysical Research Communications, 453, 254-267.
https://doi.org/10.1016/j.bbrc.2014.05.090

[23]   Traub, W.H. and Bauer, D. (2000) Surveillance of Nosocomial Cross-Infections Due to Three Acinetobacter Genospecies (Acinetobacter baumannii, Genospecies 3 and Genospecies 13) during a 10-Year Observation Period: Serotyping, Macrorestriction Analysis of Genomic DNA and Antibiotic Susceptibilities. Chemotherapy, 46, 282-292.
https://doi.org/10.1159/000007300

[24]   Silbergeld, E.K., Graham, J. and Price, L.B. (2008) Industrial Food Animal Production, Antimicrobial Resistance, and Human Health. Annual Review of Public Health, 29, 151-169.
https://doi.org/10.1146/annurev.publhealth.29.020907.090904

[25]   Chancey, S.T., Zahner, D. and Stephens, D.S. (2012) Acquired Inducible Antimicrobial Resistance in Gram-Positive Bacteria. Future Microbiology, 7, 959-978.
https://doi.org/10.2217/fmb.12.63

[26]   Chang, G., Szewczyk, P. and He, X. (2013) Structures of Multidrug Efflux Pumps from the MFS, SMR, MATE and ABC Transporter Families. Microbial Efflux Pumps: Current Research, 21, 886-887.

[27]   Deng, M., Zhu, M.H., Li, J.J., Bi, S., Sheng, Z.K., Hu, F.S., Zhang, J.J., Chen, W., Xue, X.W. and Sheng, J.F. (2014) Molecular Epidemiology and Mechanisms of Tigecycline Resistance in Clinical Isolates of Acinetobacter baumannii from a Chinese University Hospital. Anti-microbial Agents and Chemotheraphy, 58, 297-303.
https://doi.org/10.1128/AAC.01727-13

[28]   Abdallah, M., Olafisoye, O., Cortes, C., Urban, C., Landman, D. and Quale, J. (2015) Activity of Eravacycline against Enterobacteriaceae and Acinetobacter baumannii, Including Multidrug-Resistant Isolates, from New York City. Antimicrobial Agents and Chemotheraphy, 59, 1802-1805.
https://doi.org/10.1128/AAC.04809-14

[29]   Wallace, L., Daugherty, S.C., Nagaraj, S., Johnson, J.K., Harris, A.D. and Rasko, D.A. (2016) Use of Comparative Genomics to Characterize the Diversity of Acinetobacter baumannii Surveillance Isolates in a Health Care Institution. Antimicrobial Agents and Chemotheraphy, 60, 5933-5941.
https://doi.org/10.1128/AAC.00477-16

[30]   Nikaido, H. (2003) Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiology and Molecular Biology Reviews, 67, 593-656.
https://doi.org/10.1128/MMBR.67.4.593-656.2003

[31]   Bahl, C.D., Hvorecny, K.L., Bridges, A.A., Ballok, A.E., Bomberger, J.M., Cady, K.C., O’Toole, G.A. and Madden, D.R. (2014) Signature Motifs Identify an Acinetobacter Cif Virulence Factor with Epoxide Hydrolase Activity. Journal of Biological Chemistry, 289, 7460-7469.
https://doi.org/10.1074/jbc.M113.518092

[32]   Dreier, J. and Ruggerone, P. (2015) Interaction of Antibacterial Compounds with RND Efflux Pumps in Pseudomonas aeruginosa. Frontiers in Microbiology, 6, 345-349.
https://doi.org/10.3389/fmicb.2015.00660

[33]   Al Naiemi, N., Duim, B., Savelkoul, P.H., Spanjaard, L., De Jonge, E., Bart, A., Vandenbroucke-Grauls, C.M. and de Jong, M.D. (2005) Widespread Transfer of Resistance Genes between Bacterial Species in an Intensive Care Unit: Implications for Hospital Epidemiology. Journal of Clinical Microbiology, 43, 4862-4864.
https://doi.org/10.1128/JCM.43.9.4862-4864.2005

[34]   Aleksic, V., Mimica-Dukic, N., Simin, N., Nedeljkovic, N.S. and Knezevic, P. (2014) Synergistic Effect of Myrtus Communis L. essential Oils and Conventional Antibiotics against Multi-Drug Re-sistant Acinetobacter baumannii Wound Isolates. Phytomedicine, 21, 1666-1674.
https://doi.org/10.1016/j.phymed.2014.08.013

[35]   Blair, J.M., Richmond, G.E. and Piddock, L.J. (2014) Multidrug Efflux Pumps in Gram-Negative Bacteria and Their Role in Antibiotic Resistance. Future Microbiology, 9, 1165-1177.
https://doi.org/10.2217/fmb.14.66

[36]   He, X., Lu, F., Yuan, F., Jiang, D., Zhao, P., Zhu, J., Cheng, H., Cao, J. and Lu, G. (2015) Biofilm Formation Caused by Clinical Acinetobacter baumannii Isolates Is Associated with Overexpression of the AdeFGH Efflux Pump. Antimicrobial Agents and Chemotheraphy, 59, 4817-4825.
https://doi.org/10.1128/AAC.00877-15

[37]   Smani, Y., Fàbrega, A., Roca, I., Sánchez-Encinales, V., Vila, J. and Pachón, J. (2014) Role of OmpA in the Multidrug Resistance Phenotype of Acinetobacter baumannii. Antimicrobial Agents and Chemotheraphy, 58, 1806-1808.
https://doi.org/10.1128/AAC.02101-13

[38]   D’Costa, V.M., Griffiths, E. and Wright, G.D. (2007) Expanding the Soil Antibiotic Resistome: Exploring Environmental Diversity. Current Opinion in Microbiology, 10, 481-489.
https://doi.org/10.1016/j.mib.2007.08.009

[39]   Hood, M.I., Jacobs, A.C., Sayood, K., Dunman, P.M. and Skaar, E.P. (2010) Acinetobacter baumannii Increases Tolerance to Antibiotics in Response to Monovalent Cations. Antimicrobial Agents and Chemotheraphy, 54, 1029-1041.
https://doi.org/10.1128/AAC.00963-09

[40]   Yonehara, R., Yamashita, E. and Nakagawa, A. (2016) Crystal Structures of OprN and OprJ, Outer Membrane Factors of Multidrug Tripartite Efflux Pumps of Pseudomonas aeruginosa. Proteins: Structure, Function, and Bioinformatics, 84, 759-769.
https://doi.org/10.1002/prot.25022

[41]   Penwell, W.F., Shapiro, A.B., Giacobbe, R.A., Gu, R.F., Gao, N., Thresher, J., McLaughlin, R.E., Huband, M.D., DeJonge, B.L. and Ehmann, D.E. (2015) Molecular Mechanisms of Sulbactam Antibacterial Activity and Resistance Determinants in Acinetobacter baumannii. Antimicrobial Agents and Chemotheraphy, 59, 1680-1689.
https://doi.org/10.1128/AAC.04808-14

[42]   Wright, G.D. (2011) Molecular Mechanisms of Antibiotic Resistance. Chemical Communications, 47, 4055-4061.
https://doi.org/10.1039/c0cc05111j

[43]   Hassan, K.A., Jackson, S.M., Penesyan, A., Patching, S.G., Tetu, S.G., Eijkelkamp, B.A., Brown, M.H., Henderson, P.J. and Paulsen, I.T. (2013) Transcriptomic and Biochemical Analyses Identify a Family of Chlorhexidine Efflux Proteins. Proceedings of the National Academy of Sciences of the United States of America, 110, 20254-20259.
https://doi.org/10.1073/pnas.1317052110

[44]   Chitsaz, M. and Brown, M.H. (2017) The Role Played by Drug Efflux Pumps in Bacterial Multidrug Resistance. Essays in Biochemistry, 61, 127-139.
https://doi.org/10.1042/EBC20160064

[45]   Kumar, S., Mukherjee, M.M. and Varela, M.F. (2013) Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily. International Journal of Bacteriology, 20, 41.

[46]   Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J. and Handelsman, J. (2010) Call of the Wild: Antibiotic Resistance Genes in Natural Environments. Nature Reviews Microbiology, 8, 251.
https://doi.org/10.1038/nrmicro2312

[47]   Angoti, G., Bandehpour, M., Goudarzi, H., Hajizadeh, M., Zarringhalam Moghaddam, M. and Kouchaki, A. (2016) Detection of Efflux Pump Genes (adeA, adeB, adeC and abeM) in Acinetobacter baumannii Isolated from Hospitalize Patients, North-West of Iran. Infection, Epidemiology and Medicine, 2, 8-11.
https://doi.org/10.18869/modares.iem.2.4.8

[48]   Yoon, E.J., Courvalin, P. and Grillot-Courvalin, C. (2013) RND-Type Efflux Pumps in Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii: Major Role for AdeABC Overexpression and AdeRS Mutations. Antimicrobial Agents and Chemotheraphy, 57, 2989-2995.
https://doi.org/10.1128/AAC.02556-12

[49]   Zarrilli, R., Pournaras, S., Giannouli, M. and Tsakris, A. (2013) Global Evolution of Multidrug-Resistant Acinetobacter baumannii Clonal Lineages. International Journal of Antimicrobial Agents, 41, 11-19.
https://doi.org/10.1016/j.ijantimicag.2012.09.008

[50]   Yoon, E.J., Chabane, Y.N., Goussard, S., Snesrud, E., Courvalin, P., Dé, E. and Grillot-Courvalin, C. (2015) Contribution of Resistance-Nodulation-Cell Division Efflux Systems to Antibiotic Resistance and Biofilm Formation in Acinetobacter baumannii. MBio, 6, e00309-15.
https://doi.org/10.1128/mBio.00309-15

[51]   Venter, H., Mowla, R., Ohene-Agyei, T. and Ma, S. (2015) RND-Type Drug Efflux Pumps from Gram-Negative Bacteria: Molecular Mechanism and Inhibition. Frontiers in Microbiology, 6, 377.
https://doi.org/10.3389/fmicb.2015.00377

[52]   Sugawara, E. and Nikaido, H. (2014) Properties of AdeABC and AdeIJK Efflux Systems of Acinetobacter baumannii Compared with Those of the AcrAB-TolC System of Escherichia coli. Antimicrobial Agents and Chemotheraphy, 58, 7250-7257.
https://doi.org/10.1128/AAC.03728-14

[53]   Wright, G.D. (2007) The Anti-biotic Resistome: The Nexus of Chemical and Genetic Diversity. Nature Reviews Microbiology, 5, 175-186.
https://doi.org/10.1038/nrmicro1614

[54]   Erickson, K.E., Madinger, N.E. and Chatterjee, A. (2017) Draft Genome Sequences of Clinical Isolates of Multidrug-Resistant Acinetobacter baumannii. Genome Announcement, 5, e01547-16.
https://doi.org/10.1128/genomeA.01547-16

[55]   Dal, T., Aksu, B., Pagès, J.M. and Over-Hasdemir, U. (2013) Expression of the adeB Gene and Responsiveness to 1-(1-Naphthylmethyl)-piperazine and Phenylalanyl-arginyl-β-naphthylamide in Clinical Isolates of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 68, 1200-1202.
https://doi.org/10.1093/jac/dks511

[56]   Bratu, S., Landman, D., Martin, D.A., Georgescu, C. and Quale, J. (2008) Correlation of Antimicrobial Resistance with β-Lactamases, the OmpA-Like Porin, and Efflux Pumps in Clinical Isolates of Acinetobacter baumannii Endemic to New York City. Antimicrobial Agents and Chemotheraphy, 52, 2999-3005.
https://doi.org/10.1128/AAC.01684-07

[57]   Xing, L., Barnie, P.A., Su, Z. and Xu, H. (2014) Development of Efflux Pumps and Inhibitors (EPIs) in A. baumanii. Clinical Microbiology, 3, 135.

[58]   Abbott, I., Cerqueira, G.M., Bhuiyan, S. and Peleg, A.Y. (2013) Carbapenem Resistance in Acinetobacter baumannii: Laboratory Challenges, Mechanistic Insights and Therapeutic Strategies. Expert Review of Anti-Infective Therapy, 11, 395-409.
https://doi.org/10.1586/eri.13.21

[59]   Asai, S., Umezawa, K., Iwashita, H., Ohshima, T., Ohashi, M., Sasaki, M., Hayashi, H., Matsui, M., Shibayama, K. and Inokuchi, S. (2014) An Outbreak of blaOXA-51-like- and blaOXA-66-Positive Acinetobacter baumannii ST208 in the Emergency Intensive Care Unit. Journal of Medical Microbiology, 63, 1517-1523.
https://doi.org/10.1099/jmm.0.077503-0

[60]   Hernando-Amado, S., Blanco, P., Alcalde-Rico, M., Corona, F., Reales-Calderón, J.A., Sánchez, M.B. and Martínez, J.L. (2016) Multidrug Efflux Pumps as Main Players in Intrinsic and Acquired Resistance to Antimicrobials. Drug Resistance Updates, 28, 13-27.
https://doi.org/10.1016/j.drup.2016.06.007

[61]   Schindler, B.D., Frempong-Manso, E., DeMarco, C.E., Kosmidis, C., Matta, V., Seo, S.M. and Kaatz, G.W. (2015) Analyses of Multidrug Efflux Pump-Like Proteins Encoded on the Staphylococcus aureus Chromosome. Antimicrobial Agents and Chemotheraphy, 59, 747-748.
https://doi.org/10.1128/AAC.04678-14

[62]   Hu, F.S., Zhang, J.J., Chen, W., Xue, X.W., Deng, M., Zhu, M.H., Li, J.J., Bi, S. and Sheng, Z.K. (2014) Molecular Epidemiology and Mechanisms of Tigecycline Resistance in Clinical Isolates of Acinetobacter baumannii from a Chinese University Hospital. Antimicrobial Agents and Chemotheraphy, 58, 297-303.
https://doi.org/10.1128/AAC.01727-13

[63]   Vargiu, A.V., Pos, K.M., Poole, K. and Nikaido, H. (2016) Bad Bugs in the 21st Century: Resistance Mediated by Multi-Drug Efflux Pumps in Gram-Negative Bacte-ria. Frontiers in Microbiology, 7, 833.
https://doi.org/10.3389/fmicb.2016.00833

[64]   Li, J., Li, B., Wendlandt, S., Schwarz, S., Wang, Y., Wu, C., Ma, Z. and Shen, J. (2013) Identification of a Novel vga (E) Gene Variant That Confers Resistance to Pleuromutilins, Lincosamides and Streptogramin A Antibiotics in Staphylococci of Porcine Origin. Journal of Antimicrobial Chemotherapy, 69, 919-923.
https://doi.org/10.1093/jac/dkt482

[65]   Du, D., Zhao, N.R., Voss, J.E., Klimont, E.T., Venter, H., Chiu, W. and Luisi, B.F. (2014) Structure of the AcrAB-TolC Multidrug Efflux Pump. Nature, 509, 512.
https://doi.org/10.1038/nature13205

[66]   Yan, N. (2013) Structural Advances for the Major Facilitator Superfamily (MFS) Transporters. Trends in Biochemical Sciences, 38, 151-159.
https://doi.org/10.1016/j.tibs.2013.01.003

[67]   Vilacoba, E., Almuzara, M., Gulone, L., Traglia, G.M., Figueroa, S.A., Sly, G., Fernández, A., Centrón, D. and Ramírez, M.S. (2013) Emergence and Spread of Plasmid-Borne tet (B): ISCR2 in Minocy-cline-Resistant Acinetobacter baumannii Isolates. Antimicrobial Agents and Chemotheraphy, 57, 651-654.
https://doi.org/10.1128/AAC.01751-12

[68]   Yan, N. (2015) Structural Biology of the Major Facilitator Superfamily Transporters. Annual Review of Biophysics and Biomolecular Structure, 44, 257-283.
https://doi.org/10.1146/annurev-biophys-060414-033901

[69]   Si, H., Zhang, W.J., Chu, S., Wang, X.M., Dai, L., Hua, X., Dong, Z., Schwarz, S. and Liu, S. (2015) Novel Plasmid-Borne Multidrug Resistance Gene Cluster Including Lsa (E) from a Line-zolid-Resistant Enterococcus faecium Isolate of Swine Origin. Antimicrobial Agents and Chemotheraphy, 59, 7113-7116.
https://doi.org/10.1128/AAC.01394-15

[70]   Bellmann-Sickert, K., Stone, T.A., Poulsen, B.E. and Deber, C.M. (2015) Efflux by Small Multidrug Resistance Proteins Is Inhibited by Membrane-Interactive Helix-Stapled Peptides. Journal of Biological Chemistry, 290, 1752-1759.
https://doi.org/10.1074/jbc.M114.616185

[71]   Blanco, P., Hernando-Amado, S., Rea-les-Calderon, J.A., Corona, F., Lira, F., Alcalde-Rico, M., Bernardini, A., Sanchez, M.B. and Martinez, J.L. (2016) Bacterial Multidrug Efflux Pumps: Much More than Antibiotic Resistance Determinants. Microorganisms, 4, 14.
https://doi.org/10.3390/microorganisms4010014

[72]   Ruzin, A., Keeney, D. and Bradford, P.A. (2007) AdeABC Multidrug Efflux Pump Is Associated with Decreased Susceptibility to Tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii Complex. Journal of Antimicrobial Chemotherapy, 59, 1001-1004.
https://doi.org/10.1093/jac/dkm058

[73]   Lin, M.F., Lin, Y.Y., Tu, C.C. and Lan, C.Y. (2017) Distribution of Different Efflux Pump Genes in Clinical Isolates of Multidrug-Resistant Aci-netobacter baumannii and Their Correlation with Antimicrobial Resistance. Journal of Microbiology Immunology and Infection, 50, 224-231.
https://doi.org/10.1016/j.jmii.2015.04.004

[74]   Ling, B.D., Zhang, L. and Li, X.Z. (2016) Antimicrobial Resistance and Drug Efflux Pumps in Acinetobacter, in Efflux-Mediated Antimicrobial Resistance in Bacteria. Efflux-Mediated Antimicrobial Resistance in Bacteria, 329-358.
https://doi.org/10.1007/978-3-319-39658-3_13

[75]   Nie, L., Grell, E., Malviya, V.N., Xie, H., Wang, J. and Michel, H. (2016) Identification of the High-Affinity Substrate-Binding Site of the Multidrug and Toxic Compound Extrusion (MATE) Family Transporter from Pseudomonas stutzeri. Journal of Biological Chemistry, 291, 15503-15514.
https://doi.org/10.1074/jbc.M116.728618

[76]   Lloris-Garcerá, P., Seppala, S., Slusky, J.S., Rapp, M. and von Heijne, G. (2014) Why Have Small Multidrug Resistance Proteins Not Evolved into Fused, Internally Duplicated Structures? Journal of Biological Chemistry, 426, 2246-2254.

[77]   Tanaka, Y., Hipolito, C.J., Maturana, A.D., Ito, K., Kuroda, T., Higuchi, T., Katoh, T., Kato, H.E., Hattori, M. and Kumazaki, K. (2013) Structural Basis for the Drug Extrusion Mechanism by a MATE Multi-drug Transporter. Nature, 496, 247-251.
https://doi.org/10.1038/nature12014

[78]   Yang, H., Huang, L., Barnie, P.A., Su, Z., Mi, Z., Chen, J., Aparna, V., Kumar, D. and Xu, H. (2015) Characterization and Distribution of Drug Resistance Associated β-Lactamase, Membrane Porin and Efflux Pump Genes in MDR A. baumannii Isolated from Zhenjiang, China. International Journal of Clinical and Experimental Medicine, 8, 15393.

[79]   Yang, Y.S., Lee, Y., Tseng, K.C., Huang, W.C., Chuang, M.F., Kuo, S.C., Lauderdale, T.L.Y. and Chen, T.L. (2016) In Vivo and in Vitro Efficacy of Minocycline-Based Combination Therapy for Minocycline-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotheraphy, 60, 4047-4054.
https://doi.org/10.1128/AAC.02994-15

[80]   Higgins, C.F. (2001) ABC Transporters: Physiology, Structure and Mechanism—An Overview. Research in Microbiology, 152, 205-210.
https://doi.org/10.1016/S0923-2508(01)01193-7

[81]   Lewinson, O. and Livnat-Levanon, N. (2017) Mechanism of Action of ABC Importers: Conservation, Divergence, and Physiological Adaptations. Journal of Biological Chemistry, 429, 606-619.

[82]   Locher, K.P. (2016) Mechanistic Diversity in ATP-Binding Cassette (ABC) Transporters. Nature Structural & Molecular Biology, 23, 487-494.
https://doi.org/10.1038/nsmb.3216

[83]   López, M., álvarez-Fraga, L., Gato, E., Blasco, L., Poza, M., Fernández-García, L., Bou, G. and Tomás, M. (2016) Genome Sequence of a Clinical Strain of Acinetobacter baumannii Belonging to the ST79/PFGE-HUI-1 Clone Lacking the AdeABC (Resistance-Nodulation-Cell Division-Type) Efflux Pump. Genome Announcement, 4, e00962-e00916.

[84]   Spengler, G., Kincses, A., Gajdács, M. and Amaral, L. (2017) New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules, 22, 468.
https://doi.org/10.3390/molecules22030468

[85]   Hassan, K.A., Liu, Q., Henderson, P.J. and Paulsen, L.T. (2015) Homologs of the Acinetobacter baumannii AceI Transporter Represent a New Family of Bacterial Multidrug Efflux Systems. MBio, 6, e01982-e01984.
https://doi.org/10.1128/mBio.01982-14

[86]   Fuangthong, M., Julotok, M., Chintana, W., Kuhn, K., Rittiroongrad, S., Vattanaviboon, P. and Mongkolsuk, S. (2010) Exposure of Acinetobacter baylyi ADP1 to the Biocide Chlorhexidine Leads to Acquired Resistance to the Biocide Itself and to Oxidants. Journal of Antimicrobial Chemotherapy, 66, 319-322.
https://doi.org/10.1093/jac/dkq435

[87]   Wilkens, S. (2015) Structure and Mechanism of ABC Transporters. Prime Reports, 7, 14.
https://doi.org/10.12703/P7-14

[88]   Chen, Z., Shi, T., Zhang, L., Zhu, P., Deng, M., Huang, C., Hu, T., Jiang, L. and Li, J. (2016) Mammalian Drug Efflux Transporters of the ATP Binding Cassette (ABC) Family in Multidrug Resistance: A Review of the Past Decade. Cancer Letters, 370, 153-164.
https://doi.org/10.1016/j.canlet.2015.10.010

[89]   Leonard, G.D., Fojo, T. and Bates, S.E. (2003) The Role of ABC Transporters in Clinical Practice. Oncologist, 8, 411-424.
https://doi.org/10.1634/theoncologist.8-5-411

[90]   Kathawala, R.J., Gupta, P., Ashby, C.R. and Chen, Z.S. (2015) The Modulation of ABC Transporter-Mediated Multidrug Resistance in Cancer: A Review of the Past Decade. Drug Resistance Updates, 18, 1-17.
https://doi.org/10.1016/j.drup.2014.11.002

[91]   Choi, Y.H. and Yu, A.M. (2014) ABC Transporters in Multidrug Resistance and Pharmacokinetics, and Strategies for Drug Development. Current Pharmaceutical Design, 20, 793-807.
https://doi.org/10.2174/138161282005140214165212

[92]   Li, W., Zhang, H., Assaraf, Y.G., Zhao, K., Xu, X., Xie, J., Yang, D.H. and Chen, Z.S. (2016) Overcoming ABC Transporter-Mediated Multidrug Resistance: Molecular Mechanisms and Novel Therapeutic Drug Strategies. Current Pharmaceutical Design, 27, 14-29.

[93]   Massey, P.R., Fojo, T. and Bates, S.E. (2014) ABC Transporters: Involvement in Multidrug Resistance and Drug Disposition, in Handbook of Anticancer. Pharmacokinetics and Pharmacodynamics, 6, 373-400.
https://doi.org/10.1007/978-1-4614-9135-4_20

[94]   Kumar, R. and Pooja Patial, S. (2016) A Review on Efflux Pump Inhibitors of Gram-Positive and Gram-Negative Bacteria from Plant Sources. Current Microbiology and Applied Sciences, 5, 837-855.
https://doi.org/10.20546/ijcmas.2016.506.092

[95]   Cheesman, M.J., Ilanko, A., Blonk, B. and Cock, I.E. (2017) Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacognosy Reviews, 11, 57.
https://doi.org/10.4103/phrev.phrev_21_17

[96]   Lomovskaya, O. and Watkins, W. (2001) Inhibition of Efflux Pumps as a Novel Approach to Combat Drug Resistance in Bacteria. Journal of Molecular Microbiology and Biotechnology, 3, 225-236.

[97]   Gholami, M., Hashemi, A., Hakemi-Vala, M., Goudarzi, H. and Hallajzadeh, M. (2015) Efflux Pump Inhibitor Phenylalanine-Arginine β-Naphthylamide Effect on the Minimum Inhibitory Concentration of Imipenem in Acinetobacter baumannii Strains Isolated from Hospitalized Patients in Shahid Motahari Burn Hospital, Tehran, Iran. Jundishapur Journal of Microbiology, 8, e19048.
https://doi.org/10.5812/jjm.19048

[98]   Ardebili, A., Talebi, M., Azimi, L. and Lari, A.R. (2014) Effect of Efflux Pump Inhibitor Carbonyl Cyanide 3-Chlorophenylhydrazone on the Minimum Inhibitory Concentration of Ciprofloxacin in Aci-netobacter baumannii Clinical Isolates. Jundishapur Journal of Microbiology, 7, e8691.
https://doi.org/10.5812/jjm.8691

[99]   Blanchard, C., Barnett, P., Perlmutter, J. and Dunman, P.M. (2014) Identification of Acinetobacter baumannii Serum-Associated Antibiotic Efflux Pump Inhibitors. Antimicrobial Agents and Chemotheraphy, 58, 6360-6370.
https://doi.org/10.1128/AAC.03535-14

[100]   Roy, S. and Basu, S. (2016) Correlation of β-Lactam Resistance with Over Expression of Efflux Pumps among Neonatal Septicaemic Isolates of Acinetobacter baumannii from India. Journal of Infectious Diseases, 45, 69.

[101]   Pannek, S., Higgins, P.G., Steinke, P., Jonas, D., Akova, M., Bohnert, J.A., Seifert, H. and Kern, W.V. (2006) Multidrug Efflux Inhibition in Acinetobacter baumannii: Comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-β naphthylamide. Journal of Antimicrobial Chemotherapy, 57, 970-974.
https://doi.org/10.1093/jac/dkl081

[102]   Li, X.Z., Elkins, C.A. and Zgurskaya, H.I. (2016) Efflux-Mediated Antimicrobial Resistance in Bacteria: Mechanisms. Regulation and Clinical Implications, 66, 324-326.

[103]   Bohnert, J.A. and Kern, W.V. (2016) Antimicrobial Drug Efflux Pump Inhibitors, in Efflux-Mediated. Antimicrobial Resistance in Bacteria, 6, 755-795.
https://doi.org/10.1007/978-3-319-39658-3_29

[104]   Ni, W., Li, Y., Guan, J., Zhao, J., Cui, J., Wang, R. and Liu, Y. (2016) Effects of Efflux Pump Inhibitors on Colistin Resistance in Multidrug-Resistant Gram-Negative Bacteria. Antimicrobial Agents and Chemotheraphy, 60, 3215-3218.
https://doi.org/10.1128/AAC.00248-16

[105]   Mawabo, I.K., Noumedem, J.A., Kuiate, J.R. and Kuete, V. (2015) Tetracycline Improved the Efficiency of Other Antimicrobials against Gram-Negative Multi-drug-Resistant Bacteria. Journal of Infection and Public Health, 8, 226-233.
https://doi.org/10.1016/j.jiph.2014.09.001

[106]   Siriyong, T., Chusri, S., Srimanote, P., Tipmanee, V. and Voravuthikunchai, S.P. (2016) Holarrhena Antidysenterica Extract and Its Steroidal Alkaloid, Conessine, as Resistance-Modifying Agents against Extensively Drug-Resistant Acinetobacter baumannii. Microbial Drug Resistance, 22, 273-282.
https://doi.org/10.1089/mdr.2015.0194

[107]   Jamshidi, S., Sutton, J.M. and Rahman, K.M. (2017) Computational Study Reveals the Molecular Mechanism of the Interaction between the Efflux Inhibitor PAβN and the AdeB Transporter from Acinetobacter baumannii. ACS Omega, 2, 3002-3016.
https://doi.org/10.1021/acsomega.7b00131

[108]   Ahmed, S.S., Alp, E., Hopman, J. and Voss, A. (2016) Global Epidemiology on Colistin Resistant Acinetobacter baumannii. Journal of Infectious Diseases, 6, 41-45.

[109]   Cortez-Cordova, J. and Kumar, A. (2011) Activity of the Efflux Pump Inhibitor Phenylalanine-Arginine β-Naphthylamide against the AdeFGH Pump of Acinetobacter baumannii. International Journal of Antimicrobial Agents, 37, 420-424.
https://doi.org/10.1016/j.ijantimicag.2011.01.006

[110]   Lopes, B. and Amyes, S. (2013) Insertion Sequence Disruption of adeR and Ciprofloxacin Resistance Caused by Efflux Pumps and gyrA and parC Mutations in Acinetobacter baumannii. International Journal of Antimicrobial Agents, 41, 117-121.
https://doi.org/10.1016/j.ijantimicag.2012.08.012

[111]   Rhee, J.Y., Choi, J.Y. and Ko, K.S. (2016) Efflux Pump Inhibitor Carbonyl Cyanidem-chlorophenylhydrazone (CCCP) Enhances Bacteriostatic Activity of Trimethoprim-Sulfamethoxazole against Clinical Stenotrophomonas maltophilia Isolates from Korea. Journal Bacteriology and Virology, 46, 185-192.
https://doi.org/10.4167/jbv.2016.46.4.185

[112]   Mahmood, H.Y., Jamshidi, S., Mark Sutton, J. and Rahman, K.M. (2016) Current Advances in Developing Inhibitors of Bacterial Multidrug Efflux Pumps. Current Medicinal Chemistry, 23, 1062-1081.
https://doi.org/10.2174/0929867323666160304150522

[113]   Mowla, R., Wang, Y., Ma, S. and Venter, H. (2017) Kinetic Analysis of the Inhibition of the Drug Efflux Protein AcrB Using Surface Plasmon Resonance. Biochimica et Biophysica Acta, 33, 1234-1236.

[114]   Pule, C.M., Sampson, S.L., Warren, R.M., Black, P.A., van Helden, P.D., Victor, T.C. and Louw, G.E. (2015) Efflux Pump Inhibitors: Targeting Mycobacterial Efflux Systems to Enhance TB Therapy. Journal of Antimicrobial Chemotherapy, 71, 17-26.
https://doi.org/10.1093/jac/dkv316

[115]   Opperman, T.J. and Nguyen, S.T. (2015) Recent Advances toward a Molecular Mechanism of Efflux Pump Inhibition. Frontiers in Microbiology, 6, 421.
https://doi.org/10.3389/fmicb.2015.00421

[116]   Rana, T., Singh, S., Kaur, N., Pathania, K. and Farooq, U. (2014) A Review on Efflux Pump Inhibitors of Medically Important Bacteria from Plant Sources. IJPSRR, 26, 101-111.

[117]   Mullié, C., Bouharkat, B., Guiheneuf, R., Serra, C., Touil-Meddah, A.T. and Sonnet, P. (2016) Efflux Pumps in Acinetobacter baumannii: Role in Antibiotic Resistance and Interest of Efflux Pump Inhibitors as Additional Therapeutic Weapons. Antimicrobial Research, 6, 572-583.

[118]   Borges, A., Abreu, A.C., Dias, C., Saavedra, M.J., Borges, F. and Simoes, M. (2016) New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules, 21, 877.
https://doi.org/10.3390/molecules21070877

[119]   Saviuc, C., Gheorghe, I., Coban, S., Drumea, V., Banu, O., Bezirtzoglou, E. and Lazar, V. (2016) Rosmarinus officinalis Essential Oil and Eucalyptol Act as Efflux Pumps Inhibitors and Increase Ciprofloxacin Efficiency against Pseudomonas Aeruginosa and Acinetobacter baumannii MDR Strains. Romanian Biotechnological Letters, 21, 11783.

[120]   Mangiaterra, G., Laudadio, E., Cometti, M., Mobbili, G., Minnelli, C., Massaccesi, L., Citterio, B., Biavasco, F. and Galeazzi, R. (2017) Inhibitors of Multidrug Efflux Pumps of Pseudomonas aeruginosa from Natural Sources: An in Silico High-Throughput Virtual Screening and in Vitro Validation. Medicinal Chemistry Research, 26, 414-430.
https://doi.org/10.1007/s00044-016-1761-1

[121]   Prasch, S. and Bucar, F. (2015) Plant Derived Inhibitors of Bacterial Efflux Pumps: An Update. Phytochemistry Reviews, 14, 961-974.
https://doi.org/10.1007/s11101-015-9436-y

[122]   Sati, S., Takuli, P., Kumar, P. and Khulbe, K. (2015) Antibacterial Activity of Three Medicinal Plants of Kumaun Himalaya against Some Pathogenic Bacteria. International Journal of Pharmacy and Pharmaceutical Sciences, 16, 1361-1368.

[123]   Bonesi, M., Loizzo, M.R., Conforti, F., Passalacqua, N.G., Saab, A., Menichini, F. and Tundis, R. (2013) Berberis aetnensis and B. libanotica: A Comparative Study on the Chemical Composition, Inhibitory Effect on Key Enzymes Linked to Alzheimer’s Disease and Antioxidant Activity. Journal of Pharmacy and Pharmacology, 65, 1726-1735.
https://doi.org/10.1111/jphp.12172

 
 
Top