Back
 ENG  Vol.11 No.1 , January 2019
Comparison between Lambert and Maxwell Approaches in the Modelling of Microwave Heating of Liquid Foods
Abstract: Microwave heating of liquid foods in laminar flow through a circular tube has been modeled. In particular, skim milk as a Newtonian fluid and apple sauce and tomato sauce as non-Newtonian fluids have been considered. The temperature profiles have been obtained solving the motion and energy equations in transient regime and Maxwell’s equations in the frequency domain. Numerical resolution of Finite Element Method has been implemented in Comsol Multiphysics. The generation term due to the microwave heating has been evaluated according both to Lambert’s law and Poynting theorem. Finally, a comparison between the two methods has been made in order to check to what extent the results obtained with the simpler Lambert’s law approximation are comparable with those deriving from the exact solution of Maxwell equations. Dielectric properties are considered to be temperature dependent.
Cite this paper: Apicella, R. and Romano, V. (2019) Comparison between Lambert and Maxwell Approaches in the Modelling of Microwave Heating of Liquid Foods. Engineering, 11, 1-13. doi: 10.4236/eng.2019.111001.
References

[1]   Mermelstein, N.H. (1997) How Food Technology Covered Microwaves over the Years. Food Technology, 51, 82-84.

[2]   Ayappa, K.G., Davis, H.T., Davis, E.A. and Gordon J, (1991) Analysis of Microwave Heating of Materials with Temperature Dependent Properties. AIChE Journal, 37, 313-322.
https://doi.org/10.1002/aic.690370302

[3]   Chatterjee, A., Basak, T. and Ayappa, K.G. (1998) Analysis of Microwave Sintering of Ceramics AIChE Journal, 44, 2302-2311.
https://doi.org/10.1002/aic.690441019

[4]   O’Brien, K.T. and Mekkaoui, A.M. (1993) Numerical Simulation of the Thermal Fields Occurring in the Treatment of Malignant Tumors by Local Hyperthermia. Journal of Biomechanical Engineering, 115, 247-253.
https://doi.org/10.1115/1.2895482

[5]   Paulsen, K.D., Lynch, D.R. and Strohbehn, J.W. (1998) Three-Dimensional Finite, Boundary, and Hybrid Element Solutions of the Maxwell Equations for Lossy Dielectric Media. IEEE Transactions on Microwave Theory and Techniques, 36, 682-693.

[6]   Ayappa, K.G., Davis, H.T., Davis, E.A. and Gordon, J. (1992) Two Dimensional Finite Elements Analysis of Microwave Heating. AIChE Journal, 38, 1577-1592.
https://doi.org/10.1002/aic.690381009

[7]   Oliveira, M.E.C. and Franca, A.S. (2002) Microwave Heating of Foodstuffs. Journal of Food Engineering, 53, 347-359.
https://doi.org/10.1016/S0260-8774(01)00176-5

[8]   Lin, Y.E., Anantheswaran, R.C. and Puri, V.M. (1995) Finite Element Analysis of Microwave Heating of Solid Foods. Journal of Food Engineering, 25, 85-112.
https://doi.org/10.1016/0260-8774(94)00008-W

[9]   Zhou, L., Puri, V.M., Anantheswaran, R.C. and Yeh, G. (1995) Finite Element Modeling of Heat and Mass Transfer in Food Materials during Microwave Heating-Model Development and Validation. Journal of Food Engineering, 25, 509-529.
https://doi.org/10.1016/0260-8774(94)00032-5

[10]   Romano, V., Marra, F. and Tammaro, U. (2005) Modelling of Microwave Heating of Foodstuff: Study on the Influence of Sample Dimensions with a FEM Approach. Journal of Food Engineering, 71, 233-241.
https://doi.org/10.1016/j.jfoodeng.2004.11.036

[11]   Ratanadecho, P., Aoki, K. and Akahori, M. (2002) A Numerical and Experimental Investigation of the Modeling of Microwave Heating for Liquid Layers Using a Rectangular Wave Guide (Effects of Natural Convection and Dielectric Properties). Applied Mathematical Modelling, 26, 449-472.
https://doi.org/10.1016/S0307-904X(01)00046-4

[12]   Zhang, Q., Jackson, T.H. and Ungan, A. (2000) Numerical Modeling of Microwave Induced Natural Convection. Journal of Heat and Mass Transfer, 43, 2141-2154.
https://doi.org/10.1016/S0017-9310(99)00281-1

[13]   Romano, V. and Apicella, R. (2015) Microwave Heating of Liquid Foods. Engineering, 7, 297-306.
https://doi.org/10.4236/eng.2015.76026

[14]   Barringer, S.A., Davis, E.A., Gordon, J., Ayappa, K.G. and Davis, H.T. (1995) Microwave-Heating Temperature Profiles for Thin Slabs Compared to Maxwell and Lambert Law Predictions. Journal of Food Science, 60, 1137-1142.

[15]   Bird, R.B., Stewart, W.E. and Lightfoot E.N. (2002) Transport Phenomena.

[16]   Zhu, J., Kuznetsov, A.V. and Sandeep, K.P. (2007) Mathematical Modeling of Continuous Flow Microwave Heating of Liquids (Effects of Dielectric Properties and Design Parameters). International Journal of Thermal Sciences, 46, 328-341.
https://doi.org/10.1016/j.ijthermalsci.2006.06.005

[17]   Balanis, A.C. (1989) Advanced Engineering Electromagnetics.

[18]   Collin, R.E. (1992) Foundations for Microwave Engineering.

[19]   Zienkiewicz, O.C. (2000) The Finite Element Method.

[20]   Steffe, J.F. (1992) Rheological Methods in Food Process Engineering.

 
 
Top