Back
 JFRM  Vol.7 No.4 , December 2018
Next Level in Risk Management? Hedging and Trading Strategies of Volatility Derivatives Using VIX Futures
Abstract: The paper analyses how volatility derivatives on the volatility index VIX can be used as trading and risk management tools for investors and trad-ers. Volatility and the different types of volatility are discussed. It elabo-rates upon assumptions of option pricing models and specifies which complications accompany the determination of volatility. The weaknesses of the Black-Scholes-Merton model are illuminated and the difference between the model assumptions regarding volatility and market reality is identified. Using the skew- and term-curve-effect, the paper demonstrates how volatility behaves in reality towards other model parameters. In terms of pure volatility trading, the volatility derivatives are presented and analysed in terms of their merits and fields of application. Additionally, the stylized facts about volatility are considered. The paper shows how VIX futures and options can hedge equity portfolios and when they are superior to traditional hedging alternatives and compares the outcome of a VIX hedging strategy with a Buy & Hold strategy of the S & P 500 index over a time period of 20 years.
Cite this paper: J. Fahling, E. , Steurer, E. , Schädler, T. and Volz, A. (2018) Next Level in Risk Management? Hedging and Trading Strategies of Volatility Derivatives Using VIX Futures. Journal of Financial Risk Management, 7, 442-459. doi: 10.4236/jfrm.2018.74024.
References

[1]   Akgiray, V. (1989). Conditional Heteroscedasticity in Time Series of Stock Returns. The Journal of Business, 62, 55-80.
https://doi.org/10.1086/296451

[2]   Alexander, C. (2008). Pricing, Hedging and Trading Financial Instruments. Chichester: Wiley.

[3]   Andersen, T. G., Bollerslev, T., Diebold, F. X., & Ebens, H. (2001). The Distribution of Realized Stock Return Volatility. Journal of Financial Economics, 61, 43-76.
https://doi.org/10.1016/S0304-405X(01)00055-1

[4]   Black, F. (1976). Studies of Stock Price Volatility Changes. In Proceedings of the 1976 Meeting of the Business and Economical Statistics Section (pp. 177-181). Washington, DC: American Statistical Association.

[5]   Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-654.
https://doi.org/10.1086/260062

[6]   Chicago Board Options Exchange (2014). White Paper: Cboe Volatility Index.
https://www.cboe.com/micro/vix/vixwhite.pdf

[7]   Christie, A. (1982). The Stochastic Behavior of Common Stock Variances. Journal of Financial Economics, 10, 407-432.
https://doi.org/10.1016/0304-405X(82)90018-6

[8]   Cizeau, P., Liu, Y., Meyer, M., Peng, C.-K., & Stanley, H. E. (1997). Volatility Distribution in the S & P 500 Stock Index. Physica A: Statistical Mechanics and Its Applications, 245, 441-445.
https://doi.org/10.1016/S0378-4371(97)00417-2

[9]   Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option Pricing. Journal of Financial Economics, 7, 229-263.
https://doi.org/10.1016/0304-405X(79)90015-1

[10]   Davis, M. H. (2010). Black-Scholes Formula. In R. Cont (Ed.), Encyclopaedia of Quantitative Finance (pp. 199-207). Chichester: Wiley.
https://doi.org/10.1002/9780470061602.eqf05004

[11]   Figlewski, S., & Wang, X. (2001). Is the “Leverage Effect” a Leverage Effect? SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.256109

[12]   Hilpold, C., & Kaiser, D. G. (2010). Innovative Investmentstrategien. Wiesbaden: Gabler.
https://doi.org/10.1007/978-3-8349-8749-5

[13]   Lee, B.-S., & Rui, O. M. (2002). The Dynamic Relationship between Stock Returns and Trading Volume. Journal of Banking & Finance, 26, 51-78.
https://doi.org/10.1016/S0378-4266(00)00173-4

[14]   Liu, Y., Gopikrishnan, P., Cizeau, P., Meyer, M., Peng, C. K., & Stanley, H. E. (1999). Statistical Properties of the Volatility of Price Fluctuations. Physical Review E, 60, 1390-1400.
https://doi.org/10.1103/PhysRevE.60.1390

[15]   Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36, 394-419.
https://doi.org/10.1086/294632

[16]   Natenberg, S. (2015). Option Volatility and Pricing (2nd ed.). New York: McGraw-Hill Education.

[17]   Passarelli, D. (2012). Trading Options Greeks (2nd ed.). New York: Bloomberg Press.
https://doi.org/10.1002/9781118531846

[18]   Rhoads, R. (2011). Trading VIX Derivatives. Hoboken, NJ: Wiley.

[19]   Sinclair, E. (2013). Volatility Trading (2nd ed.). Hoboken, NJ: Wiley.

[20]   Sindreu, J. (2018). Wall Street’s Fear Gauge Flashes Green Again. Wall Street Journal.
https://www.wsj.com/articles/wall-streets-fear-gauge-flashes-green-again-1539870354

[21]   Steiner, M., Bruns, C., & Stöckl, S. (2012). Wertpapiermanagement (10th ed.). Stuttgart: Schäffer-Poeschel.

[22]   Tauchen, G. E., & Pitts, M. (1983). The Price Variability-Volume Relationship on Speculative Markets. Econometrica, 51, 485-505.
https://doi.org/10.2307/1912002

[23]   Taylor, S. (1986). Modelling Financial Time Series. Chichester: Wiley.

[24]   The Options Guide (2017). Volatility Smiles & Smirks.
http://www.theoptionsguide.com/volatility-smile.aspx

[25]   Turner, A. L., & Weigel, E. J. (1992). Daily Stock Market Volatility. Management Science, 38, 1586-1609.
https://doi.org/10.1287/mnsc.38.11.1586

 
 
Top