Back
 JAMP  Vol.6 No.12 , December 2018
The Radiation System Synthesis by the Power Criterion as a Problem of Optimization with Restrictions
Abstract: A nonlinear synthesis problem of antennas according to the prescribed power (squared amplitude) radiation pattern (RP) is considered in the variational statement that yields in the possibility to take into account an additional restriction to the synthesized power RP. The problem of synthesis consists of finding such currents in antenna, which generates the RP with the best approximation to the given one. The respective Euler’s equation is reduced on the basis of used functional. This is nonlinear integral equation of Hammerstein’s type. The effective numerical methods are elaborated and applied for its solving. The computational results verify the effectiveness of approach proposed.
Cite this paper: Andriychuk, M. and Podlevskyi, B. (2018) The Radiation System Synthesis by the Power Criterion as a Problem of Optimization with Restrictions. Journal of Applied Mathematics and Physics, 6, 2650-2665. doi: 10.4236/jamp.2018.612220.
References

[1]   Liu, Y.H., Huang, X., Xu, K.D., Song, Z.Y., Yang, S.W. and Liu, Q.H. (2017) Pattern Synthesis of Unequally Spaced Linear Arrays including Mutual Coupling Using Iterative FFT via Virtual Active Element Pattern Expansion. IEEE Transactions on Antennas and Propagation, 65, 3950-3958.
https://doi.org/10.1109/TAP.2017.2708081

[2]   Rivas, A., Rodriguez, J.A., Ares, F. and Moreno, E. (2001) Planar Arrayas with Square Lattices and Circular Boundaries: Sum Patterns from Distributions with Uniform, Amplitude or Very Low Dynamic-Range Ratio. IEEE Antennas and Propagation Magazine, 43, 90-93.
https://doi.org/10.1109/74.979369

[3]   Bhattacharyya, A.K. (2007) Active Element Pattern Symmetry for Asymmetrical Element Arrays. IEEE Antennas and Wireless Propagation Letters, 6, 275-278.
https://doi.org/10.1109/LAWP.2007.898549

[4]   Morabito, A.E., Isernia, T. and D’Urso, M. (2010) Synthesis of Difference Patterns via Uniform Amplitude Sparse Arrays. Electronics Letters, 46, 554-556.
https://doi.org/10.1049/el.2010.3591

[5]   Sobhani, H., Zakeri-Khatir, H. and Firouzjaei, A.S. (2018) Controlling Amplitude and Radiation Pattern of Emitted Terahertz by Group Velocity Mismatch. IEEE Transactions on Antennas and Propagation, 66, 5268-5273.
https://doi.org/10.1109/TAP.2018.2854304

[6]   Bulatsyk, O.O., Katsenelenbaum, B.Z., Topolyuk, Y.P. and Voitovich, N.N. (2010) Phase Optimization Problems. Wiley-VCH, Weinheim.
https://doi.org/10.1002/9783527629824

[7]   Choni, Y.I. (1968) On Antenna System Synthesis According to Given Amplitude Radiation Pattern. Izvestiya Vuzov-Radioelectronika, 11, 1325-1327. (In Russian)

[8]   Voitovich, N.N. (1972) Antenna Synthesis according to Amplitude Radiation Pattern (V. V. Semenov’s Method). Radio Engineering and Electronics, 17, 2491-2497.

[9]   Voitovich, N.N. and Savenko, P.A. (1975) Branching of Solutions of the Antenna Synthesis Problem Based on a Specified Amplitude Radiation Pattern. Radio Engineering and Electronics, 20, 1-8.

[10]   Savenko, P.A. (1979) Synthesis of Linear Antenna Arrays with the Prescribed Amplitude Pattern. Radio Engineering and Electronics, 22, 1045-1049.

[11]   Andriychuk, M.I., Voitovich, N.N., Savenko, P.A. and Tkachuk, V.P. (1993) Synthesis of Antennas According to Amplitude Directivity Pattern. Naukova Dumka, Kiev. (In Russian)

[12]   Podlevskyi, B.M. (2009) Numerical Algorithms of Finding the Branching Lines and Bifurcation Points of Solutions of Nonlinear Integral Equation Arising in the Theory of Antennas Synthesis. International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, Lviv, 21-24 September 2009, 197-203.
https://doi.org/10.1109/DIPED.2009.5306942

[13]   Podlevs’kyi, B.M. (2010) On One Approach to Finding the Branching Lines and Bifurcation Points of Solutions of Nonlinear Integral Equations Whose Kernels Depend Analytically on Two Spectral Parameters. Journal of Mathematical Sciences, 171, 433-452.
https://doi.org/10.1007/s10958-010-0148-y

[14]   Podlevskyi, B.M. (2010) On Some Nonlinear Two-Parameter Spectral Problems of Mathematical Physics. Mathematical Modelling, 22, 131-145. (In Russian)

[15]   Podlevskyi, B.M. (2012) Numerical Algorithms of Finding the Branching Lines and Bifurcation Points of Solutions for One Class of Nonlinear Integral Equations. In: Awrejcewicz, J. and Hagedorn, P., Eds., Nonlinearity, Bifurcation and Chaos: Theory and Applications, InTech Publishing, Novi Sad, 281-312.

[16]   Podlevskyi, B.M., Khlobystov, V.V. and Yaroshko, O.S. (2017) Multiparameter Eigenvalue Problems: Methods and Algorithms. Lambert Acad. Publish.

[17]   Savenko, P.O. (2000) On Structure of Solution to Problem of Synthesis of Linear Antenna by a Given Radiation Pattern. Radiophysics and Radioastronomy, 5, 405-415. (In Russian)

[18]   Savenko, P.O. (2002) Nonlinear Problems of Radiating Systems. IAPMM NASU, Lviv. (In Ukrainian)

[19]   Savenko, P.O. (2014) Nonlinear Synthesis Problems of Radiating Systems with Plane Aperture. IAPMM NASU, Lviv. (In Ukrainian)

[20]   Podlevskyi, B.M. and Mohytych, H.A. (2015) Numerical Algorithm for Finding Branching Points for Solutions of a Class of Nonlinear Integral Equations. International Scientific Mykhailo Kravchuk Conference, Vol. 2, Kyiv, May 13-15 2015, 149-153.

[21]   Podlevskyi, B.M. and Koval, T.V. (2016) Numerical Algorithm for Finding Branching Points for Solutions of a Class of Nonlinear Integral Equations. International Scientific Mykhailo Kravchuk Conference, Vol. 2, Kyiv, May 19-20 2016, 151-154.

[22]   Andriychuk, M.I. and Voitovich, N.N. (2013) Antenna Synthesis According to Power Radiation Pattern with Condition of Norm Equality. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, Lviv, 137-140.

[23]   Voitovich, N.N., Topolyuk, Yu.P. and Reshnyak, O.O. (2000) Approximation of Compactly Supported Functions with Free Phase by Functions with Bounded Spectrum. Fields Institute Communications, 25, 531-541.

[24]   Voitovich, N.N. (2003) Antenna Synthesis by Amplitude Radiation Pattern and Modified Phase Problem. In: Katsenelenbaum, B.Z., Ed., Electromagnetic Fields-Restrictions and Approximation, WILEY-VCH, Weinheim, 195-233.

[25]   Bulatsyk, O.O. (2013) Complex Polynomials Representation of Solutions to the Antenna Synthesis Problem by the Power Pattern. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, Lviv, 166-170.

[26]   Andriychuk, M., Bulatsyk, O. and Voitovich, N. (2014) Polynomial Approach to Linear Antenna Array Synthesis Problem According to Power Radiation Pattern with Restriction to Its Norm. 15th International Conference on Mathematical Methods in Electromagnetic Theory, Dnipropetrovsk, 36-38.
https://doi.org/10.1109/MMET.2014.6928739

[27]   Andriychuk, M.I., Bulatsyk, O.O. and Voitovich, N.N. (2014) Comparing Different Approaches to Linear Antenna Synthesis Problems According to Power Radiation Pattern. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, Tbilisi, 15-18.
https://doi.org/10.1109/DIPED.2014.6958307

[28]   Andriychuk, M. and Voytovych, M. (2014) Modified Newton Method for Antenna Power Synthesis Problem with Fixed Norm of the Pattern. Journal of Computational and Applied Mathematics, 2, 3-10.

[29]   Andriychuk, M.I., Bulatsyk, O.O. and Voytovych, M.M. (2014) Applying the Concept of Generating Polynomials to the Antenna Synthesis Problem by Power Criterion. Mathematical Modeling and Computing, 1, 121-134.

 
 
Top