Back
 JAMP  Vol.6 No.12 , December 2018
Primary Assumptions and Guidance Laws in Wave Mechanics
Abstract: In an article written by Louis de Broglie in 1959 (30 years after the Nobel prize rewarding his foundation of Wave Mechanics), the most challenging problem raised by the Bohr, Heisenberg and Born Standard Quantum Mechanics (SQM) was pointed out in the renunciation to describe “a permanent localization in space, and therefore a well-defined trajectory” for any moving particle. This challenge is taken up in the present paper, showing that de Broglie’s Primary Assumption p=hk, predicting the wave-particle duality, does also allow to obtain from the energy-dependent form of the Schrödinger and/or Klein-Gordon equations the Guidance Laws piloting particles along well-defined trajectories. The energy-independent equations, on the other hand, may only give riseboth in SQM and in the Bohmian approachto probabilistic descriptions, overshadowing the role of de Broglies matter waves in physical space.
Cite this paper: Orefice, A. , Giovanelli, R. and Ditto, D. (2018) Primary Assumptions and Guidance Laws in Wave Mechanics. Journal of Applied Mathematics and Physics, 6, 2621-2634. doi: 10.4236/jamp.2018.612218.
References

[1]   de Broglie, L. (1959) L’interprétation de la Mécanique Ondulatoire. Le Journal de Physique et le Radium, 20, 963-979.
https://doi.org/10.1051/jphysrad:019590020012096300

[2]   Pauling, L. and Wilson Jr., E.B. (1935) Introduction to Quantum Mechanics. McGraw-Hill Company, Inc., NewYork, London.

[3]   Orefice, A., Giovanelli, R. and Ditto, D. (2009) Complete Hamiltonian Description of Wave-Like Features in Classical and Quantum Physics. Foundations of Physics, 39, 256.
https://doi.org/10.1007/s10701-009-9280-2

[4]   Orefice, A., Giovanelli, R. and Ditto, D. (2012) Beyond the Eikonal Approximation in Classical Optics and Quantum Physics. In: Oriols, X. and Mompart, J., Eds., Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology, Chapter: 7, PAN Stanford Publishing, Singapore, 425-453

[5]   Orefice, A., Giovanelli, R. and Ditto, D. (2013) A Non-Probabilistic Insight into Wave Mechanic. Annales de la Fondation Louis de Broglie, 38, 7-31.

[6]   Orefice, A., Giovanelli, R. and Ditto, D. (2015) From Classical to Wave-Mechanical Dynamics. Annales de la Fondation Louis de Broglie, 40, 95.

[7]   Orefice, A., Giovanelli, R. and Ditto, D. (2015) Is Wave Mechanics Consistent with Classical Logic? Physics Essays, 28, 515-521.
https://doi.org/10.4006/0836-1398-28.4.515

[8]   Orefice, A., Giovanelli, R. and Ditto, D. (2018) Dynamics of Wave-Particle Duality. Journal of Applied Mathematics and Physics, 6, 1840.

[9]   Goldstein, H. (1965) Classical Mechanics. Addison-Welsey, Boston.

[10]   de Broglie, L. (1924) A Tentative Theory of Light Quanta. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47, 446-458.
https://doi.org/10.1080/14786442408634378

[11]   de Broglie, L. (1925) Recherches sur la théorie des quanta. Annales de Physique, 10, 22.

[12]   de Broglie, L. (1965) La nature ondulatoire del’électron. Nobel Lectures in Physics 1922-1941, Elsevier Publ. Co., Amsterdam, 244.

[13]   Davisson, C.J. and Germer, L.H. (1927) The Scattering of Electrons by a Single Crystal of Nickel. Nature, 119, 558-560.
https://doi.org/10.1038/119558a0

[14]   Schrödinger, E. (1926) Quantisierung als Eigenwertproblem I. Annalen der Physik, 79, 361.
https://doi.org/10.1002/andp.19263840404

[15]   Schrödinger, E. (1926) Quantisierung als Eigenwertproblem II. Annalen der Physik, 79, 489.
https://doi.org/10.1002/andp.19263840602

[16]   Schrödinger, E. (1926) Quantisierung als Eigenwertproblem III. Annalen der Physik, 80, 437.
https://doi.org/10.1002/andp.19263851302

[17]   Schrödinger, E. (1926) Quantisierung als Eigenwertproblem IV. Annalen der Physik, 81, 109.
https://doi.org/10.1002/andp.19263861802

[18]   Persico, E. (1950) Fundamentals of Quantum Mechanics. Prentice-Hall, Inc., Upper Saddle River.

[19]   Messiah, A. (1959) Mécanique Quantique, Dunod.

[20]   de Broglie, L. (1956) Une tentative d’interprétation causale et non-linéaire de la Mécanique Ondulatoire: La théorie de la double solution. Gauthier-Villars, Paris.

[21]   de Broglie, L. (1971) L’interprétation de la Mécanique ondulatoire par la théorie de la double solution. In: d’Espagnat, B., Ed., Foundations of Quantum Mechanics, Academic Press, New York, 345-367.

[22]   de Broglie, L. (1987) Interpretation of Quantum Mechanics by the Double Solution Theory. Annales de la Fondation Louis de Broglie, 12, 1.

[23]   Born, M. (1935) Atomic Physics. Blackie & Son Ltd., London.

[24]   Born, M. (1926) Quantenmechanik der StoBvorgange. Zeitschrift für Physik, 38, 803-827.
https://doi.org/10.1007/BF01397184

[25]   Bohm, D.J. (1952) A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables I. Physical Review, 85, 166.
https://doi.org/10.1103/PhysRev.85.166

[26]   Bohm, D.J. (1952) A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables II. Physical Review, 85, 180.
https://doi.org/10.1103/PhysRev.85.180

[27]   Holland, P.R. (1992) The Quantum Theory of Motion. Cambridge University Press, Cambridge.

[28]   Wyatt, R.E. (2005) Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, Berlin.

[29]   Dürr, D. and Teufel, S. (2009) Bohmian Mechanics. Springer-Verlag, Berlin.

[30]   Oriols, X. and Mompart, J. (2012) Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology. Pan Stanford Publishing.

[31]   Sanz, A.S. and Miret-Artès, S. (2012-2014) A Trajectory Description of Quantum Processes. Vol. I-II, Springer, Berlin.

[32]   Benseny, A., Albareda, G., Sanz, A.S., Mompart, J. and Oriols, X. (2014) Applied Bohmian Mechanics. The European Physical Journal D, 68, 286.
https://doi.org/10.1140/epjd/e2014-50222-4

[33]   Aharonov, Y. and Rohrlich, D. (2005) Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley, Hoboken.
https://doi.org/10.1002/9783527619115

[34]   Hardy, L. (1992) Quantum Mechanics, Local Realistic Theories and Lorentz Invariant Theories. Physical Review Letters, 68, 2981.
https://doi.org/10.1103/PhysRevLett.68.2981

[35]   de Broglie, L. (1927) The New Dynamics of Quanta. In: Bacciagaluppi, G. and Valentini, A., Eds., The Book Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference, Part III, Cambridge University Press, Cambridge, 374.

 
 
Top