[1] Lawn, B. (1999) Fracture of Brittle Solids. Cambridge University Press, Cambridge.
[2] Kovziridze, Z., Hennicke, H.W. and Kharitonov, F. (1998) Thermomechanics of Ceramics. Fachhochschule Karlsruhe HochschulefuerTechnik, Karlsruhe.
[3] Kovziridze, Z., Aneli, J., Nijaradze, N. and Tabatadze, G. (2017) Ceramic and Polymer Composites. LAP LAMBERT Academic Publishing. International BookMarket Service Ltd.
[4] Kovziridze, Z., Nijaradze, N., Tabatadze, G. and Aneli, J. (2016) Ceramic and Polymer Composites. Monograph, Georgian Technical University, Tbilisi.
[5] Budworth, D.W. (1970) Theory of Pore Closure during Sintering. Transactions of the British Ceramic Society, 69, 29-31.
[6] Grifith, A.A. (1920) The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society A, 221, 163-198.
[7] Shvedkov, E.L., Kovensky, I.I., Denisenko, E.T. and Zyrin, A.V. (1991) Dictionary Reference Book for New Ceramic. Academy of Sciences of Ukraine. Institute of Problems of Material Sciences, Kiev, “NaukovaDumka”, 115-116.
[8] Richerson, D.W. (1992) Modern Ceramic Engineering. Marcel Dekker Inc., New York.
[9] Grathwohl, G. and Kuntz, M. (2004) Mechanische Eigenschaftenim Buch Technische Keramik. Herausgeber W. Kollenberg, VULKAN_VERLAG ESSEN, Germany, 45-55.
[10] Munz, D. and Fett, T. (1999) Ceramics: Mechanical Properties, Failure Behavior, Materials Selection. Springer-Verlag Berlin Heidelberg, New York, 61.
https://doi.org/10.1007/978-3-642-58407-7
[11] Grathwohl, G. (1993) Mechanische Eigenschaftenkeramischer Konstruktionswerkstoffe DGM Informationsgesellschaft mbh.
[12] Natsenko, A.I. (1971) Thermal Stability of Brittlematerials. Journal of Metallurgy, 15, 189-208.
[13] Kingery, W.D. (1963) Measurements at High Temperatures. “Metallurgizdat”, Moscow, 466.
[14] Sobolev, I.D. and Egorov, V.I. (1962) Thermal Fatigue and Thermal Shock. In: Stability and Deformation in Uneven Temperature Fields, “Gosatomizdat”, Moscow, 194.
[15] Troshchenko, V.T. (1971) Fatigue and Inelasticity of Metals. “NaukovaDumka”, Kiev, 268.
[16] Pisarenko, G.S., Troshchenko, V.T., Timoshchenko, V.G., et al. (1962) Stability of Metal-Ceramic Materials and Alloys at Normal and High Temperatures. Kiev. Published by Academy of Sciences of Ukraine, SSR, 275.
[17] Geitwud, B.E. (1959) Temperature Stresses. Moscow Edition, “Foreign Literature”, 349.
[18] Kovziridze, Z., Nijaradze, N., Tabatadze, G., Cheishvili, T., Mestvitishvili, Z., Mshvildadze, M. and Darakhvelidze, N. (2017) Obtaining of Composites by Metal-Thermal and Nitriding Processes in Si-Sic-Al-Geopolymer System. Ceramic and Advanced Technologies, 19, 33-52.
http://www.ceramics.gtu.ge
https://doi.org/10.4236/jectc.2017.74009
[19] Kovziridze, Z., Nijaradze, N., Tabatadze, G., Cheishvili, T., Mshvildadze, M., Mestvirishvili, Z., Kinkladze, V. and Daraxvelidze, N. (2007) Obtaining of SiAlON Composite via Metal-Thermal and Nitrogen Processes in the SiC-Si-Al-Geopolymer System. Journal of Electronics Cooling and Thermal Control, 7, 103-122.
http://www.scirp.org/journal/jectc
[20] Maslennikova, G.N. and Kharitonov, F.Ya. (1977) Electro-Ceramic, Stable to Thermal Shocks. Moscow. Energy, 9-10.11-18, 163-175.
[21] Kingery, W.D. (1955) Factors Affecting Thermal Shock Resistance of Ceramic Materials. Journal of the American Ceramic Society, 38, 3-15.
https://doi.org/10.1111/j.1151-2916.1955.tb14545.x
[22] Buessem, W. (1955) Thermal Shock Testing. Journal of the American Ceramic Society, 38, 15-17.
https://doi.org/10.1111/j.1151-2916.1955.tb14546.x
[23] Davidge, R. and Tappin, G. (1967) Thermal Shock and Fracture in Ceramics. Transactions of the British Ceramic Society, 66, 405-422.
[24] Failure Stress Energy Formula. Georgian National Intellectual Property Center “Georgia Patent” (Sakpatenti). Certificate of Deposition 7289.2018.03.27.