JST  Vol.1 No.4 , December 2011
Improvement of High Dynamic Range Capacitive Displacement Sensor by a Globalm Planarization
Abstract: This study presents an improvement of high dynamic range contact-type capacitive displacement sensor by applying planarization. The sensor is called the contact-type linear encoder-like capacitive displacement sensor (CLECDiS), is a nano-meter-resolution sensor with a wide dynamic range. However, height differences due to patterned electrodes may cause a variety of problems or performance degradation. In devices of two glass wafer surfaces with patterned structures assembled face-to-face and in sliding contact, the heights of the patterns crucially affect their performance and practicality, so it should be planarized for reducing the problem. A number of techniques for planarizing glass wafer surfaces with patterned chrome electrodes were evaluated and the following three were selected as adequate: lift-off, etch-back, and chemical mechanical polishing (CMP). The fabricated samples showed that CMP provided the best planarization. CMP was successfully employed to produce CLECDiS with improved signal reliability due to reduced collisions between electrodes.
Cite this paper: nullD. Kang and W. Moon, "Improvement of High Dynamic Range Capacitive Displacement Sensor by a Globalm Planarization," Journal of Sensor Technology, Vol. 1 No. 4, 2011, pp. 99-107. doi: 10.4236/jst.2011.14014.

[1]   S. Zhang and S. Kiyono, “An Absolute Calibration Method for Displacement Sensors,” Measurement, Vol. 29, 2001, pp. 11-20. doi:10.1016/S0263-2241(00)00023-3

[2]   X. Li, “An Accurate Interface for Capacitive Sensors,” IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 5, 2002, pp. 935-939. doi:10.1109/TIM.2002.807793

[3]   A. A. Kuijpers, G. J. M. Krijnen, R. J. Wiegerink, T. S. J. Lammerink and M. Elwenspoek, “A Micromachined Capacitive Incremental Position Sensor: Part 2. Experimental Assessment,” Journal of Micromechanics and Microengineering, Vol. 16, No. 6, 2006, pp. S125-S134. doi:10.1088/0960-1317/16/6/S19

[4]   A. A. Arkadan, S. Subramaniam-Sivanesan and O. Douedari, “Design Optimization of a Capacitive Transducer for Displacement Measurement,” IEEE Transactions on Magnetics, Vol. 35, No. 3, 1999, pp. 1869-1872. doi:10.1109/20.767398

[5]   F. Zhu and J. W. Spronck, “A Capacitive Tactile Sensor for Shear and Normal Force Measurements,” Sensors and Actuators A, Vol. 31, No. 1-3, 1992, pp. 115-120. doi:10.1016/0924-4247(92)80089-L

[6]   F. Zhu and J. W. Spronck, “A Simple Capacitive Displacement Sensor,” Sensors and Actuators A, Vol. 25-27, 1991, pp. 265-269. doi:10.1016/0924-4247(91)87003-L

[7]   W. C. Heerens, “Application of Capacitance Techniques in Sensor Design,” Journal of Physics E: Scientific Instruments, Vol. 19, 1986, pp. 897-906. doi:10.1088/0022-3735/19/11/002

[8]   M. Hirasawa, M. Nakamura and M. Kanno, “Optimum Form of Capacitive Transducer for Displacement Measurement,” IEEE Transactions on Instrumentation and Measurement, Vol. IM-33, 1984, pp. 276-280. doi:10.1109/TIM.1984.4315224

[9]   M. Kim, W. Moon, E. Yoon and K.-R. Lee, “A New Capacitive Displacement Sensor with High Accuracy and Long-Range,” Sensors and Actuators A, Vol. 103-131, 2006, pp. 135-141.

[10]   M. Kim, W. Moon and W. Chung, “Capacitive Motor Sensor,” US Patent, US 6,996,495 B2. 2006, p.13.

[11]   D. Kang, “Improvement Contact-Type Linear Encoder- Like Capacitive Displacement Sensor (CLECDiS),” Engineering, Thesis of Master Degree, POSTECH, Pohang, 2006, p. 71.

[12]   Wikipedia, the Free Encyclopedia, “Surface Roughness,”

[13]   I. Ishida, S. Tahara and Y. Wada, “Advanced Lift off Planarization Process for Josephson Integrated Circuits,” Applied Physics Letters, Vol. 53, 1988, pp. 316-318. doi:10.1063/1.99906

[14]   Y. Ding, M. Pakala, P. Nguyen, H. Meng, Y. Huai and J. P. Wang, “Fabrication of Current-Induced Magnetization Switching Devices Using Etch-Back Planarization Process,” Journal of Applied Physics, Vol. 97, 2005, pp. 10C702-710C702-3.

[15]   L. Wang, W. Zeng, W. Li and D. Sun, “Etch-Back in DDSOG Process by Ultrasonic Agitation and Application to Tunneling Gyroscope Fabrication,” Proceedings of the 4th IEEE International Conference on Nano/Micro Engineered and Moecular Systems, Shenzhen, China, 2009, pp. 156-159. doi:10.1109/NEMS.2009.5068548

[16]   G. Grivna and R. Goodner, “A New Global Planarization Technique Using in Situ Isotropic Photoresist Mask Erosion,” Journal of Electrochemical Society, Vol. 141, 1994, pp. 251-254. doi:10.1149/1.2054693

[17]   P. B. Zantye, A. Kumar and A. K. Sikder, “Chemical Mechanical Planarization for Microelectronics Applications,” Materials Science & Engineering R-Reports, Vol. 45, 2004, pp. 89-220. doi:10.1016/j.mser.2004.06.002

[18]   S. Pandija, D. Roy and S. V. Babu, “Achievement of High Planarization Efficiency in CMP of Copper at a Reduced down Pressure,” Microelectronic Engineering, Vol. 86, No. 3, 2009, pp. 367-373. doi:10.1016/j.mee.2008.11.047

[19]   Y. B. Park, J. H. Ahn, M. H. Lee, H. J. Kim and H. D. Jeong, “Removal Rate and Thermal Effect on Wafer Size in Cu CMP,” 2008 Autumn Conference, Korea Society of Precision Engineering, 2008, pp. 445-446.

[20]   D. Rosales-Yeomans, D. De Nardis, L. Borucki and A. Philipossian, “Design and Evaluation of Pad Grooves for Copper CMP,” Journal of the Electrochemical Society, Vol. 155, No. 10, 2008, pp. H797-H806. doi:10.1149/1.2963268

[21]   R. Ihnfeldt and J. B. Talbot, “The Effects of Copper CMP Slurry Chemistry on the Colloidal Behavior of Alumina Abrasives,” Journal of the Electrochemical Society, Vol. 153, No. 11, 2006, pp. G948-G955. doi:10.1149/1.2335982

[22]   J.-B. Chiu, A.-J. Su, C.-C. Yu and S-H. Shen, “Planarization Strategy of Cu CMP,” Journal of the Electrochemical Society, Vol. 151, No. 4, 2004, pp. G217-G222. doi:10.1149/1.1649985

[23]   J. C. Yang, D. W. Oh, G. W. Lee, C. L. Song and T. Kim, “Step Height Removal Mechanism of Chemical Mechanical Planarization (CMP) for Sub-Nano-Surface Finish,” Wear, 2009, Article in Press.

[24]   A. R. Sethuraman, J. F. Wang and L. M. Cook, “Review of Planarization and Reliability Aspects of Future Interconnect Materials,” Journal of Electronic Materials, Vol. 25, No. 10, 1996, pp. 1617-1622. doi:10.1007/BF02655585

[25]   H. Liang, “Chemical Boundary Lubrication in Chemical- Mechanical Planarization,” Tribology International, Vol. 38, No. 3, 2005, pp. 235-242. doi:10.1016/j.triboint.2004.08.006

[26]   M. Kim and W. Moon, “A New Linear Encoder-Like Capacitive Displacement Sensor,” Measurement, Vol. 39, No. 6, 2006, pp. 481-489. doi:10.1016/j.measurement.2005.12.012

[27]   M. Kim and W. Moon, “A New Capacitive Displacement Sensor for High Accuracy and Long Range,” Journal of the Korean Sensors Society, Vol. 14, 2005, pp. 219-224.

[28]   M. E. Kiziroglou, C. He and E. M. Yeatman, “Non- Resonant Electrostatic Energy Harvesting from a Rolling Mass,” 5th International Summer School and Symposium on Medical Devices and Biosensors (ISSS-MDBS), Hong Kong, 1-3 June 2008, pp. 318-321.

[29]   J. L. Tech, “DLC (Diamond-Like Carbon),” J&L Tech, 2010.

[30]   K.-R. Lee and K. Y. Eun, “Diamond-Like Carbon Film,” Bulletin of The Korean Institute of Metals and Materials, Vol. 6, 1993, pp. 345-361.

[31]   J. Robertson, “Properties of Diamond-Like Carbon,” Surface and Coatings Technology, Vol. 50, No. 3, 1992, pp. 185-203.