[1] S. Takahashi, “Downstream Molecular Pathways of Flt3 in the Pathogenesis of Acute Myeloid Leukemia: Biology and Therapeutic Implications,” Journal of Hematology & Oncology, Vol. 4, No. 13, 2011, pp. 1-10. doi:10.1186/1756-8722-4-13
[2] S. Takahashi, “Current Findings for Recurring Mutations in Acute Myeloid Leukemia,” Journal of Hematology & Oncology, Vol. 4, No. 36, 2011, pp. 1-11. doi:10.1186/1756-8722-4-36
[3] M. B. Miranda, T. F. McGuire and D. E. Johnson, “Importance of MEK-1/-2 Signaling in Monocytic and Granulocytic Differentiation of Myeloid Cell Lines,” Leukemia, Vol. 16, No. 4, 2002, pp. 683-692. doi:10.1038/sj.leu.2402400
[4] M. Milella, S. M. Kornblau, Z. Estrov, et al., “Therapeutic Targeting of the MEK/MAPK Signal Transduction Module in Acute Myeloid Leukemia,” Journal of Clinical Investigation, Vol. 108, No. 6, 2001, pp. 851-859. doi:10.1172/JCI12807
[5] S. Takahashi, “Combination Therapy with Arsenic Trioxide for Hematological Malignancies,” Anti-Cancer Agents in Medicinal Chemistry, Vol. 10, No. 6, 2010, pp. 504-510.
[6] P. Lunghi, A. Tabilio, F. Lo-Coco, P. G. Pelicci and A. Bonati, “Arsenic Trioxide (ATO) and MEK1 Inhibition Synergize to Induce Apoptosis in Acute Promyelocytic Leukemia Cells,” Leukemia, Vol. 19, No. 2, 2005, pp. 234-244. doi:10.1038/sj.leu.2403585
[7] P. Lunghi, A. Costanzo, L. Salvatore, et al., “MEK1 Inhibition Sensitizes Primary Acute Myelogenous Leukemia to Arsenic Trioxide-Induced Apoptosis,” Blood, Vol. 107, No. 11, 2006, pp. 4549-4553. doi:10.1182/blood-2005-07-2829
[8] S. Takahashi, H. Harigae, H. Yokoyama, et al., “Synergistic Effect of Arsenic Trioxide and Flt3 Inhibition on Cells with Flt3 Internal Tandem Duplication,” International Journal of Hematology, Vol. 84, No. 3, 2006, pp. 256-261. doi:10.1532/IJH97.06076
[9] S. Takahashi, H. Harigae, J. Kameoka, T. Sasaki and M. Kaku, “AML1B Transcriptional Repressor Function is Impaired by the Flt3 Internal Tandem Duplication,” British Journal of Haematology, Vol. 130, No. 3, 2005, pp. 428-436. doi:10.1186/1756-8722-4-13
[10] S. Takahashi, H. Harigae, M. Kaku, T. Sasaki and J. D. Licht, “Flt3 Mutation Activates p21(WAF1/CIP1) Gene Expression through the Action of STAT5,” Biochemical and Biophysical Research Communications, Vol. 316, No. 1, 2004, pp. 85-92. doi:10.1186/1756-8722-4-36
[11] M. Hirosawa, M. Nakahara, R. Otosaka, et al., “The p38 Pathway Inhibitor SB202190 Activates MEK/MAPK to Stimulate the Growth of Leukemia Cells,” Leukemia Research, Vol. 33, No. 5, 2009, pp. 693-699. doi:10.1016/j.leukres.2008.09.028
[12] J. Wen, H. Y. Cheng, Y. Feng, et al., “P38 MAPK Inhibition Enhancing ATO-Induced Cytotoxicity Against Multiple Myeloma Cells,” British Journal of Haematology, Vol. 140, No. 2, 2008, pp. 169-180. doi:10.1111/j.1365-2141.2007.06895.x
[13] A. Verma, M. Mohindru, D. K. Deb, et al., “Activation of Rac1 and the p38 Mitogen-Activated Protein Kinase Pathway in Response to Arsenic Trioxide,” Journal of Biological Chemistry, Vol. 277, No. 47, 2002, pp. 44988- 44995. doi:10.1074/jbc.M207176200
[14] P. Lunghi, N. Giuliani, L. Mazzera, et al., “Targeting MEK/MAPK Signal Transduction Module Potentiates ATO-Induced Apoptosis in Multiple Myeloma Cells through Multiple Signaling Pathways,” Blood, Vol. 112, No. 6, 2008, pp. 2450-2462. doi:10.1182/blood-2007-10-114348
[15] D. Douer and M. S. Tallman, “Arsenic Trioxide: New Clinical Experience with an Old Medication in Hematologic Malignancies,” Journal of Clinical Oncology, Vol. 23, No. 10, 2005, pp. 2396-2410. doi:10.1200/JCO.2005.10.217
[16] M. Cavigelli, W. W. Li, A. Lin, et al., “The Tumor Promoter Arsenite Stimulates AP-1 Activity by Inhibiting a JNK Phosphatase,” The European Molecular Biology Or- ganization Journal, Vol. 15, No. 22, 1996, pp. 6269- 6279.
[17] S. Ludwig, A. Hoffmeyer, M. Goebeler, et al., “The Stress Inducer Arsenite Activates Mitogen-Activated Pro- tein Kinases Extracellular Signal-Regulated Kinases 1 and 2 via a MAPK Kinase 6/p38-Dependent Pathway,” Journal of Biological Chemistry, Vol. 273, No. 4, 1998, pp. 1917-1922. doi:10.1074/jbc.273.4.1917
[18] C. Huang, W. Y. Ma, J. Li, A. Goranson and Z. Dong, “Requirement of Erk, but Not JNK, for Arsenite-Induced Cell Transformation,” Journal of Biological Chemistry, Vol. 274, No. 21, 1999, pp. 14595-14601. doi:10.1074/jbc.274.21.14595
[19] P. Baines, J. Fisher, L. Truran, et al., “The MEK Inhibitor, PD98059, Reduces Survival but Does Not Block Acute Myeloid Leukemia Blast Maturation in vitro,” European Journal of Haematology, Vol. 64, No. 4, 2000, pp. 211- 218. doi:10.1034/j.1600-0609.2000.90139.x
[20] P. Lunghi, A. Tabilio, P. P. Dall'Aglio, et al., “Downmodulation of ERK Activity Inhibits the Proliferation and Induces the Apoptosis of Primary Acute Myelogenous Leukemia Blasts,” Leukemia, Vol. 17, No. 9, 2003, pp. 1783-1793. doi:10.1038/sj.leu.2403032
[21] M. A. Morgan, O. Dolp and C. W. Reuter, “Cell-Cycle- Dependent Activation of Mitogen-Activated Protein Kinase (MEK-1/2) in Myeloid Leukemia Cell Lines and Induction of Growth Inhibition and Apoptosis by Inhibitors of RAS Signaling,” Blood, Vol. 97, No. 6, 2001, pp. 1823-1834. doi:10.1182/blood.V97.6.1823
[22] S. Takahashi, “Inhibition of the MEK/MAPK Signal Transduction Pathway Strongly Impairs the Growth of Flt3-ITD Cells,” American Journal of Hematology, Vol. 81, No. 2, 2006, pp. 154-155. doi:10.1002/ajh.20520