[1] S. K. Lin, C. D. Fuh, and T. J. Ko, “A bootstrap method with importance resampling to evaluate value-at-risk,” J. Financial Studies, Vol. 12, pp. 81–116, 2004.
[2] H. G. Fong and K. C. Lin, “A new analytical approach to value at risk,” J. Portfolio Management, Vol. 25, pp. 88–97, 1999.
[3] P. Glasserman, P. Heidelberger, and P. Shahabuddin, Vaniance Reduction Technique for Estimating Value-at- Risk, Management Sci., Vol. 46, pp. 1349–1364, 2000.
[4] E. Eberlein, U. Keller, and K. Prause, “New insights into smile, mispricing, and value-at-risk: The hyperbolic model, J. Business, Vol. 71, pp. 371–406, 1998.
[5] J. R. M. Hosking, G. Bonti, and D. Siegel, “Beyond the Lognormal,” Risk, Vol. 13, pp. 59–62, 2000.
[6] K. Koedijk, R. Huisman, and R. Pownall, “VaR-x: Fat tails in financial risk management,” J. Risk 1, pp. 47–62, 1998.
[7] P. Glasserman, P. Heidelberger, and P. Shahabuddin, “Portfolio value-at-risk with heavy-tailed risk factors,” Math. Finance, Vol. 12, pp. 239–269, 2002.
[8] R. C. Merton, “Option pricing when underlying stock returns are discontinuous,” J. Financial Econ., Vol. 3, pp. 125–144, 1976.
[9] J.-C. Duan, “The GARCH option pricing model,” Math. Finance, Vol. 5, pp. 13–32, 1995.
[10] S. Heston, “A closed-form folution for options with stochas-tic volatility with applications to bond and currency op-tions,” Rev. Financial Studies, Vol. 6, pp. 327–343, 1993.
[11] P. Jorion, Value at risk, McGraw-Hill, New York, 1997.
[12] C. Rouvnez, Going Greek with VaR, Risk 10 (1997) 57–65.
[13] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” J. Political Econ., Vol. 81, pp. 637–659, 1973.