WJA  Vol.1 No.4 , December 2011
Structural Analysis of Predicted HIV-1 Secis Elements
Abstract: Incorporation of Selenocysteine into protein requires an RNA structural motif, SECIS (Selenocysteine insertion sequence) element that, along with other factors, demarcates UGA-Sec from the UGA termination codon, for expression of Selenoproteins (in case of eukaryotes). It has been predicted that during HIV infection, several functional viral selenoproteins are expressed and synthesis of these viral selenoproteins deplete the selenium level of the host. It might be that even the viral genome has the SECIS elements in their Selenoprotein mRNA, and during infection, the host cellular machinery is transformed in such a way that the human Sec tRNA binds to the viral Selenoprotein mRNA, instead of binding to its own Selenoprotein mRNA, thus leading to expression of viral selenoproteins. This hypothesis was tested in this study by identifying the SECIS elements in the HIV-1 genome and further predicting their secondary and tertiary structures. We then tried to dock these tertiary structures with human Sec tRNA. Here we report putatively the presence of 3215 SECIS elements in the HIV-1 genome and that the human Sec tRNAsec binds to the viral SECIS elements present in the viral selenoprotein mRNA. Based on an earlier finding, it was observed that atoms of A8 and U9, which present in human Sec tRNA, are the possible key sites for binding.
Cite this paper: nullP. Roy, S. Ganguli, P. Sharma, P. Basu and A. Datta, "Structural Analysis of Predicted HIV-1 Secis Elements," World Journal of AIDS, Vol. 1 No. 4, 2011, pp. 208-218. doi: 10.4236/wja.2011.14030.

[1]   V. N. Gladyshev, T. C. Stadtman, D. L. Hatfield and K. T. Jeang, “Levels of Major Selenoproteins in T Cells Decrease during HIV Infection and Low Molecular Mass Selenium Compounds Increase,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, No. 3, 1999, pp. 835-839. doi:10.1073/pnas.96.3.835

[2]   B. Moghadaszadeh and A. H. Beggs, “Selenoproteins and Their Impact on Human Health through Diverse Physiological Pathways,” Physiology, Vol. 21, No. 5, 2006, pp. 307-315. doi:10.1152/physiol.00021.2006

[3]   B. M. Dworkin, “Selenium Deficiency in HIV Infection and the Acquired Immunodeficiency Syndrome (AIDS),” Chemico-Biological Interactions, Vol. 9, No. 2-3, 1994, pp. 181-186. doi:10.1016/0009-2797(94)90038-8

[4]   J. Lu and A. Holmgren, “Selenoproteins,” Journal of Biological Chemistry, Vol. 284, No. 2, 2009, pp.723-727. doi:10.1074/jbc.R800045200

[5]   S. C. Gamble, A. Wiseman and P. S. Goldfarb, “Selenium-Dependent Glutathione Peroxidase and Other Selenoproteins: Their Synthesis and Biochemical Roles,” Journal of Chemical Technology and Biotechnology, Vol. 68, No.2, 1997, pp. 123-134. doi:10.1002/(SICI)1097-4660(199702)68:2<123::AID-JCTB641>3.0.CO;2-O

[6]   X. M. Xu, B. A. Carlson, Y. Zhang, H. Mix, G. V. Kryukov, R. S. Glass, M. J. Berry, V. N. Gladyshev and D. L. Hatfield, “New Developments in Selenium Biochemistry: Selenocysteine Biosynthesis in Eukaryotes and Archaea,” Biological Trace Element Research, Vol. 119, No. 3, 2007, pp. 234-241. doi:10.1007/s12011-007-8003-9

[7]   J. M. Coffin, S. H. Hughes and H. E. Varmus, “Retroviruses,” Cold Spring Harbor Laboratory Press, New York, 1997.

[8]   A. D. Frankel and J. A. Young, “HIV-1: Fifteen Proteins and an RNA,” Annual Review of Biochemistry, Vol. 67, No. 1, 1998, pp. 1-25. doi:10.1146/annurev.biochem.67.1.1

[9]   C. K. Damgaard, E. S. Andersen, B. Knudsen, J. Gorodkin and J. Kjems, “RNA Interactions in the 5’ Region of the HIV-1 Genome,” Journal of Molecular Biology, Vol. 336, No. 2, 2004, pp. 369-379. doi:10.1016/j.jmb.2003.12.010

[10]   S. P. Goff, “Host Factors Exploited by Retroviruses,” Nature Reviews Microbiology, Vol. 5, No. 4, 2007, pp. 253-263.

[11]   K. A. Wilkinson, R. J. Gorelick, S. M. Vasa, N. Guex, A. Rein, D. H. Mathews, M. C. Giddings and K. M. Weeks, “High-Throughput SHAPE Analysis Reveals Structures in HIV-1 Genomic RNA Strongly Conserved across Distinct Biological States,” PLoS Biology, Vol. 6, No. 4, 2008, pp. 883-899. doi:10.1371/journal.pbio.0060096

[12]   J. M. Watts, K. K. Dang, R. J. Gorelick, C. W. Leonard, J. W. Bess, R. Swanstrom Jr., C. L. Burch and K. M. Weeks, “Architecture and Secondary Structure of an Entire HIV-1 RNA Genome,” Nature, Vol. 460, No. 7256, 2009, pp. 711-716. doi:10.1038/nature08237

[13]   L. Zhao, A. G. Cox, J. A. Ruzicka, A. A. Bhat, W. Zhang and E. W. Taylor, “Molecular Modeling and in Vitro Activity of an HIV-1-Encoded Glutathione Peroxidase,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 12, 2000, pp. 6356-6361. doi:10.1073/pnas.97.12.6356

[14]   G. Leslie, “Potential SECIS Elements in HIV-1 Strain HXB2,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, Vol. 17, No. 5, 1998, pp. 398-403. doi:10.1097/00042560-199804150-00003

[15]   Y. Zhang and V. N. Gladyshev, “An Algorithm for Identification of Bacterial Selenocysteine Insertion Sequence Elements and Selenoprotein Genes,” Bioinformatics, Vol. 21, No. 11, 2005, pp. 2580-2589. doi:10.1093/bioinformatics/bti400

[16]   M. Zuker, “Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction,” Nucleic Acids Research, Vol. 31, No. 13, 2003, pp. 3406-3415. doi:10.1093/nar/gkg595

[17]   Y. Ding and C. E. Lawrence, “A Bayesian Statistical Algorithm for RNA Secondary Structure Prediction,” Computers & Chemistry, Vol. 23, No. 3-4, 1999, pp. 387- 400. doi:10.1016/S0097-8485(99)00010-8

[18]   Y. Itoh, S. Chiba, S. Sekine and S. Yokoyama, “Crystal Structure of Human Selenocysteine tRNA,” Nucleic Acids Research, Vol. 37, No. 18, 2009, pp. 6259-6268. doi:10.1093/nar/gkp648