AJOR  Vol.1 No.4 , December 2011
An Objective Penalty Functions Algorithm for Multiobjective Optimization Problem
By using the penalty function method with objective parameters, the paper presents an interactive algorithm to solve the inequality constrained multi-objective programming (MP). The MP is transformed into a single objective optimal problem (SOOP) with inequality constrains; and it is proved that, under some conditions, an optimal solution to SOOP is a Pareto efficient solution to MP. Then, an interactive algorithm of MP is designed accordingly. Numerical examples show that the algorithm can find a satisfactory solution to MP with objective weight value adjusted by decision maker.

Cite this paper
nullZ. Meng, R. Shen and M. Jiang, "An Objective Penalty Functions Algorithm for Multiobjective Optimization Problem," American Journal of Operations Research, Vol. 1 No. 4, 2011, pp. 229-235. doi: 10.4236/ajor.2011.14026.
[1]   R. Benayoun, J. de Montgoler, J. Tergny and O. Larichev, “Linear Programming with Multiple Objective Functions: Stem Method (STEM),” Mathematical Programming, Vol. 1, No. 3, 1971, pp. 355-375. doi:10.1007/BF01584098

[2]   A. M. Geoffrion, J. S. Dyer and A. Feinberg, “An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department,” Management Science, Vol. 19, No. 4, 1972, pp. 457-368. doi:10.1287/mnsc.19.4.357

[3]   S. Zionts and J. Wallenius, “An Interactive Programming Method for Solving the Multiple Criteria Problem,” Management Science, Vol. 22, No. 6, 1976, pp. 652-663. doi:10.1287/mnsc.22.6.652

[4]   E. E. Rosinger, “Interactive Algorithm for Multiobjective Optimization,” Journal of Optimization Theory and Applications, Vol. 35, No. 3, 1981, pp. 339-365. doi:10.1007/BF00934907

[5]   S. Zionts and J. Wallenius, “An Interactive Multiple for a Class of Underlying Nonlinear Utility Functions,” Management Science, Vol. 29, No. 5, 1983, pp. 519-529. doi:10.1287/mnsc.29.5.519

[6]   S. Sadagopan and A. Ravinderan, “An Interactive Algorithm for Multiple Citeria Nonlinear Programming Problems,” European Journal of Operational Research, Vol. 25, No. 2, 1986, pp. 247-257. doi:10.1016/0377-2217(86)90089-5

[7]   S. Helbig, “An Interactive Algorithm for Nonlinear Vector Optimization,” Applied Mathematics and Optimization, Vol. 22, No. 1, 1990, pp. 147-151. doi:10.1007/BF01447324

[8]   M. Abd El-Hady Kassem, “Interactive Stability of Multiobjective Nonlinear Programming Problems with Fuzzy Parameters in the Constraints,” Fuzzy Sets and Systems, Vol. 73, No. 2, 1995, pp. 235-243. doi:10.1016/0165-0114(94)00317-Z

[9]   B. Aghezzaf and T. Ouaderhman, “An Interactive Interior Point Algorithm for Multiobjective Linear Programming Problems,” Operations Research Letters, Vol. 29, No. 4, 2001, pp. 163-170. doi:10.1016/S0167-6377(01)00089-X

[10]   M. A. Abo-Sinna and T. H. M. Abou-El-Enien, “An Interactive Algorithm for Large Scale Multiple Objective Programming Problems with Fuzzy Parameters through TOPSIS Approach,” Applied Mathematics and Computation, Vol. 177, 2006, pp. 515-527. doi:10.1016/j.amc.2005.11.030

[11]   M. Luque, F. Ruiz and R. E. Steuer, “Modified Interactive Chebyshev Algorithm (MICA) for Convex Multiobjective Programming,” European Journal of Operational Research, Vol. 204, No. 3, 2010, pp. 557-564. doi:10.1016/j.ejor.2009.11.011

[12]   Z. Q. Meng, Q. Y. Hu and C. Y. Dang. “A Penalty Function Algorithm with Objective Parameters for Nonlinear Mathematical Programming,” Journal of Industrial and Management Optimization, Vol. 5, No. 3, 2009, pp. 585- 601. doi:10.3934/jimo.2009.5.585

[13]   F. H. Clarke, “Optimization and Nonsmooth Analysis,” John-Wiley & Sons, New York, 1983.