Optimal Adjustment Algorithm for p Coordinates and The Starting Point in Interior Point Methods

References

[1] G. B. Dantzig, “Converting A Converging Algorithm into a Polynomially Bounded Algorithm,” Technical Report, Stanford University, SOL 91-5, 1991.

[2] G. B. Dantzig, “An ?-Precise Feasible Solution to a Linear Program with a Convexity Constraint in 1/?2 Iterations Independent of Problem Size,” Technical Report, Stanford University, SOL 92-5, 1992.

[3] M. Epelman and R. M. Freund, “Condition Number Complexity of an Elementary Algorithm for Computing a Reliable Solution of a Conic Linear System,” Mathematical Programming, Vol. 88, No. 3, 2000, pp. 451-485.

[4] J. P. M. Gon?alves, “A Family of Linear Programming Algorithms Based on the Von Neumann Algorithm,” Ph.D. Thesis, Lehigh University, Bethlehem, 2004.

[5] J. P. M. Gon?alves, R. H. Storer and J. Gondzio, “A Family of Linear Programming Algorithms Based on an Algorithm by Von Neumann,” Optimization Methods and Software, Vol. 24, No. 3, 2009, pp. 461-478.
doi:10.1080/10556780902797236

[6] J. Silva, “Uma Família de Algoritmos para Programa??o Linear Baseada no Algoritmo de Von Neumann,” Ph.D. Thesis, IMECC-UNICAMP, Campinas, 2009 (in Portu- guese).

[7] S. Mehrotra, “On the Implementation of a Primal-Dual Interior Point Method,” SIAM Journal on Optimization, Vol. 2, No. 4, 1992, pp. 575-601.

[8] H. Y. Benson and D. F. Shanno, “An Exact Primal Dual Penalty Method Approach to Warm Starting Interior- Point Methods for Linear Programming,” Computational Optimization and Applications, Vol. 38, No. 3, 2007, pp. 371-399. doi:10.1007/s10589-007-9048-6

[9] E. John and E. A. Yildirim, “Implementation of Warm- Start Strategies in Interior-Point Methods for Linear Pro- gramming in Fixed Dimension,” Computational Optimization and Applications, Vol. 41, No. 2, 2008, pp. 151- 183. doi:10.1007/s10589-007-9096-y

[10] A. Engau, M. F. Anjos and A. Vannelli, “A Primal-Dual Slack Approach to Warm Starting Interior-Point Methods for Linear Programming,” Operations Research and Cy- ber-Infrastructure, Vol. 47, 2009, pp. 195-217.
doi:10.1007/978-0-387-88843-9_10

[11] G. B. Dantzig and M. N. Thapa, “Linear Programming 2: Theory and Extensions,” Springer-Velag, New York, 1997.

[12] D. Bertsimas and J. N. Tsitsiklis, “Introduction to Linear Optimization,” Athena Scientific, Belmont, 1997.

[13] J. Czyzyk, S. Mehrotra, M. Wagner and S. J. Wright, “PCx an Interior Point Code for Linear Programming,” Optimization Methods & Software, Vol. 11, No.1-4, 1999, pp. 397-430. doi:10.1080/10556789908805757

[14] NETLIB Collection LP Test Sets, “NETLIB LP Repository,” http://www.netlib.org/lp/data

[15] M. L. Models, “Hungarian Academy of Sciences OR Lab,”
http://www.sztaki.hu/meszaros/puplic-ftp/lptestset/mist