Back
 MSA  Vol.9 No.13 , December 2018
Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elastomeric Polyurethane Films
Abstract: Strain sensors for human-motion detection must offer high stretchability, high sensitivity, fast response, and high recovery speed. In this study, we choose silver paste as a sensing material and use a screen printing method to fabricate the strain sensor based upon an electrical-resistance mechanism. After curing elastomeric polyurethane film with a thickness of 150 μm on PET film, the polyester resin mixed with blocked isocyanate curing agent was coated as a masking layer to reduce the film’s stickiness. The effect of the polyester masking layer upon the silver paste screen printing process was examined using a rolling-ball-tack test, TGA analysis of polyester resins, and cured silver-electrode films. The cost-effective strain sensor fabricated by using silver paste and screen printing processes on the stretchable-polyurethane-substrate film showed high sensitivity and fast response in a strain range of up to 100%.
Cite this paper: Lee, C. , Kwon, B. , Nam, H. , Seo, D. , Park, J. , Hwangbo, H. , Park, L. and Nam, S. (2018) Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elastomeric Polyurethane Films. Materials Sciences and Applications, 9, 1008-1020. doi: 10.4236/msa.2018.913073.
References

[1]   Webb, R.C., Bonifas, A.P., Behnaz, A., Zhang, Y., Yu, K.J., Cheng, H., Shi, M., Bian, Z., Liu, Z., Kim, Y.S., Yeo, W.Z., Bian, Z., Liu, Y.S., Kim, W.H., Park, J.S., Song, J., Li, Y., Huang, Y., Gorbach, A.M. and Rogers, J.A. (2013) Ultrathin Conformal Devices for Precise and Continuous Thermal Characterization of Human Skin. Nature Materials, 12, 938-944.
https://doi.org/10.1038/nmat3755

[2]   Mannsfeld, S.C.B., Tee, B.C.-K., Stoltenberg, R.M., Chen, C.V.H.H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C. and Bao, Z. (2010) Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers. Nature Materials, 9, 859-864.
https://doi.org/10.1038/nmat2834

[3]   Lipomi, D.J., Vosgueritchian, M., Tee, B.C.K., Hellstrom, S.L., Lee, J.A., Fox, C.H. and Bao, Z. (2011) Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes. Nature Nanotechnology, 6, 788-792.
https://doi.org/10.1038/nnano.2011.184

[4]   Cai, L., Song, L., Luan, P.S., Zhang, Q.Z., Zhang, N., Gao, Q.Q., Zhao, D., Zhang, X., Tu, M., Yang, F., Zhou, WB.., Fan, Q.X., Luo, J., Zhou, W.Y., Ajayan, P.M. and Xie, S.S. (2013) Super-Stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection. Scientific Reports, 3, Article No. 3048.
https://doi.org/10.1038/srep03048

[5]   Cohen, D.J., Mitra, D., Peterson, K. and Maharbiz, M.M. (2012) A Highly Elastic, Capacitive Strain Gauge Based on Percolating Nanotube Networks. Nano Letters, 12, 1821-1825.
https://doi.org/10.1021/nl204052z

[6]   Kim, K., Hyun, B.G., Jang, J., Cho, E., Park, Y.-G. and Park, J.-U. (2016) Nano-material-Based Stretchable and Transparent Electrodes. Journal of Information Display, 17, 131-141.
https://doi.org/10.1080/15980316.2016.1240111

[7]   Sheng, J., Jeong, H.-J., Han, K.-L., Hong, T. and Park, J.-S. (2017) Review of Recent Advances in Flexible Oxide Semiconductor Thin-Film Transistors. Journal of Information Display, 18, 159-172.
https://doi.org/10.1080/15980316.2017.1385544

[8]   Trung, T.Q., Tien, N.T., Seol, Y.G. and Lee, N.E. (2012) Transparent and Flexible Organic Field-Effect Transistor for Multi-Modal Sensing. Organic Electronics, 13, 533-540.
https://doi.org/10.1016/j.orgel.2011.12.015

[9]   Roh, E., Hwang, B.U., Kim, D., Kim, B.Y. and Lee, N.E. (2015) Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano, 9, 6252-6261.
https://doi.org/10.1021/acsnano.5b01613

[10]   Xiao, X., Yuan, L.Y., Zhong, J.W., Ding, T.P., Liu, Y., Cai, Z.X., Rong, Y.G., Han, H.W., Zhou, J. and Wang, Z. L. (2011) High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films. Advanced Materials, 23, 5440-5444.
https://doi.org/10.1002/adma.201103406

[11]   Zhang, W.G., Zhu, R., Nguyen, V. and Yang, R. (2014) Highly Sensitive and Flexible Strain Sensors Based on Vertical Zinc oxide Nanowire Arrays. Sensors and Actuators A: Physical, 205, 164-169.
https://doi.org/10.1016/j.sna.2013.11.004

[12]   Mai, W.J., Liang, Z.W., Zhang, L., Yu, X., Liu, P.Y., Zhu, H.M., Cai, X. and Tan, S.Z. (2012) Strain Sensing Mechanism of the Fabricated ZnO Nanowire-Polymer Composite Strain Sensors. Chemical Physics Letters, 538, 99-101.
https://doi.org/10.1016/j.cplett.2012.04.041

[13]   Sun, Q., Seung, W., Kim, B.J., Seo, S., Kim, S.W. and Cho, J.H. (2015) Active Matrix Electronic Skin Strain Sensor Based on Piezopotential-Powered Graphene Transistors. Advanced Materials, 27, 3411-3417.
https://doi.org/10.1002/adma.201500582

[14]   Zhou, J., Gu, Y.D., Fei, P., Mai, W.J., Gao, Y.F., Yang, R.S., Bao, G. and Wang, Z. L. (2008) Flexible Piezotronic Strain Sensor. Nano Letters, 8, 3035-3040.
https://doi.org/10.1021/nl802367t

[15]   Yao, S.S. and Zhu, Y. (2014) Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires. Nanoscale, 6, 2345-2352.
https://doi.org/10.1039/c3nr05496a


 
 
Top