ABB  Vol.2 No.6 , December 2011
Decision-making by nematodes in complex microfluidic mazes
ABSTRACT
Nematodes are microscopic, soil-dwelling worms that navigate through soil particles in search of food or a suitable host. Most nematode species employ a myriad of physical and chemical cues that define their navigation strategies. Here, we demonstrate a microfluidic method to observe and characterize the physical aspects of nematode navigation at real-time. The microfluidic devices comprise a series of interconnected T-maze or cylindrical structures of varying geometry. At each physical intersection, nematodes are given the choice to migrate left or right. We found that this decision-making of nematodes is influenced by the angle of intersection of T-maze structures. We further showed that nematodes can be passively directed to move in a linear direction by carefully adjusting the position and spacing of cylindrical obstacles in its path. The experiments were conducted on two nematodes (non-parasitic C. elegans and pigparasitic Oesophagostomum dentatum) and in the absence of any chemical or electrical stimulants.

Cite this paper
nullPandey, S. , Joseph, A. , Lycke, R. and Parashar, A. (2011) Decision-making by nematodes in complex microfluidic mazes. Advances in Bioscience and Biotechnology, 2, 409-415. doi: 10.4236/abb.2011.26060.
References
[1]   Rankin, C.H., Beck, C.D.O. and Chiba, C.M. (1990) Caenorhabditis elegans: A new model system for the study of learning and memory. Behavioural Brain Research, 37, 89-92. doi:10.1016/0166-4328(90)90074-O

[2]   Wicks, S.R. and Rankin, C.H. (1997) The effects of tap withdrawal response habituation on other withdrawal behaviors: The localization of habituation in C. elegans. Behavioral Neuroscience, 111, 1-12. doi:10.1037/0735-7044.111.2.342

[3]   D’Adamo, P., Wolfer, D.P., Kopp, C., Tobler, I., Toniolo, D. and Lipp, H.-P. (2004) Mice deficient for the synaptic vesicle protein Rab3a show impaired spatial reversal learning and increased explorative activity but none of the behavioral changes shwon by mice deficient for the Rab3a regulator Gdi1. European Journal of Neuroscience, 19, 1895-1905. doi:10.1111/j.1460-9568.2004.03270.x

[4]   Wood, M.A., Kaplan, M.P., Park, A., Blanchard, E.J., Lombardi, T.L. and Abel, T. (2005) Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learning & Memory, 12, 111-119. doi:10.1101/lm.86605

[5]   Croll, N.A. (2009) Components and patterns in the behaviour of the nematode Caenorhabditis elegans. Journal of zoology, 176, 159. doi:10.1111/j.1469-7998.1975.tb03191.x

[6]   Croll, N.A. (1977) The location of parasites within their hosts: The behaviour of Nippostrongylus brasiliensis in the anaesthetised rat. International Journal for Parasito- Logy, 7, 195. doi:10.1016/0020-7519(77)90046-7

[7]   Croll, N.A. (1977) Sensory mechanisms in nematodes. Annual Review of Phytopathology, 15, 75. doi:10.1146/annurev.py.15.090177.000451

[8]   Niebur, E. and Erdos, P. (1991) Theory of the locomotion of nematodes-dynamics of undulatory progression on a surface. Biophysical Journal, 60, 1132-1146. doi:10.1016/S0006-3495(91)82149-X

[9]   Niebur, E. and Erdos, P. (1993) Theory of the locomotion of nematodes: Control of the somatic motor neurons by interneurons. Mathematical Biosciences, 118, 51-82. doi:10.1016/0025-5564(93)90033-7

[10]   Roussel, N., Morton, C.A., Finger, F.P. and Roysam, B. (2007) A computational model for C. elegans locomotory behavior: Application to multiworm tracking. IEEE Transactions on Biomedical Engineering, 54, 1786-1797. doi:10.1109/TBME.2007.894981

[11]   Restif, C. and Metaxas, D. (2008) Tracking the swimming motions of C. elegans worms with applications in aging studies. International Conference on Medical Image Computing and Computer Assisted Intervention, 11, 35-42.

[12]   Lockery, S.R., Lawton, K.J., Doll, J.C., Faumont S. and Coulthard, S.M. (2008) Artificial dirt: Microfluidic substrates for nematode neurobiology and behavior. Journal of Neurophysiology, 99, 3136-3143. doi:10.1152/jn.91327.2007

[13]   Park, S., Hwang, H., Nam, S.W., Martinez, F., Austin, R.H. and Ryu, W.S. (2008) Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PLoS One, 3, e2550. doi:10.1371/journal.pone.0002550

[14]   Chronis, N. (2010) Worm chips: microtools for C. elegans biology. Lab on a Chip, 10, 432-437. doi:10.1039/b919983g

[15]   Crane, M.M., Chung, K., Stirman, J. and Lu, H. (2010) Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab on a Chip, 10, 1509- 1517. doi:10.1039/b927258e

[16]   Rohde, C.B., Zeng, F., Gonzalez-Rubio, R., Angel, M. and Yanik, M.F. (2007) Microfluidic system for on-chip high-through-put whole-animal sorting and screening at subcellular resolution. Proceeding of the National Academy of Sciences of the United States of America, 104, 13891-13895. doi:10.1073/pnas.0706513104

[17]   Qin, J. and Wheeler, A.R. (2007) Maze exploration and learning in C. elegans. Lab on a Chip, 7, 186-192. doi:10.1039/b613414a

[18]   Petersen, M.B., Craven, J., Bjorn, H. and Nansen, P. (2000) Use of a migration assay for the separation of adult pyrantel-susceptible and -resistant Oesophagostomum dentatum. Veterinary Parasitology, 91, 141-145. doi:10.1016/S0304-4017(00)00264-8

[19]   Kotze, A.C., Le Jambre, L.F. and O’Grady, J. (2006) A modified larval migration assay for detection of resistance to macrocyclic lactones in Haemonchus contortus, and drug screening with Trichostrongylidae parasites. Veterinary Parasitology, 137, 294-305. doi:10.1016/j.vetpar.2006.01.017

[20]   Daugschies, A. and Ruttkowski, B. (1998) Modulation of migration of Oesophagostomum dentatum larvae by inhibitors and products of eicosanoid metabolism. International Journal for Parasitology, 28, 355-362. doi:10.1016/S0020-7519(97)00153-7

[21]   Lorimer, S.D., Perry, N.B., Foster, L.M., Burgess, E.J., Douch, P.G.C., Hamilton, M.C., Donaghy, M.J. and McGregor, R.A. (1996) A Nematode Larval Motility Inhibition Assay for Screening Plant Extracts and Natural Products. Journal of Agricultural and Food Chemistry, 44, 2842-2845. doi:10.1021/jf9602176

[22]   Wang, W., Shor, L.M., LeBoeuf, E.J., Wikswo, J.P., Taghon, G.L. and Kosson, D.S. (2008) Protozoan Migration in Bent Microfluidic Channels. Applied and Environmental Microbiology, 74, 1945-1949. doi:10.1128/AEM.01044-07

 
 
Top