NM  Vol.2 No.4 , December 2011
Expression of CD133 and Extracellular Matrix Molecules in Malignant Brain Tumors
ABSTRACT
Background: CD133 could be characterized as a “stem-like” cell subpopulation and an invasive tumor phenotype. The objectives of this study were to investigate the relationship of CD133 and other remodeling factors such as matrix metalloproteinases (MMP) in the brain tumors. Methods: Tumors from 13 patients with brain tumors (8 lung cancer metastasis, 3 breast cancer metastasis, 2 gliomas) were studied to investigate the expression-patterns of CD133, EGFR, MT1-MMP, and MMP7 using the immunostaining and RT-PCR analysis. Results: EGFR immunostaining was detected in 75% (6/8) and 67% (1/3) of brain metastasis from lung adenocarcinoma and breast cancer, respectively. MT1-MMP immunostaining was also detected in 73% (8/11) of these brain metastasis. CD133 was not detected in these 13 patients. EGFR immunostaining was detected in 75% (6/8) and 67% (1/3) of brain metastasis from lung adenocarcinoma and breast cancer, respectively. MT1-MMP immunostaining was also detected in 73% (8/11) of these brain metastasis. CD133 was not detected in these 13 patients. Conclusions: The expression of CD133 indicates a marker for brain tumor initiating.

Cite this paper
nullS. Yoshida and T. Koike, "Expression of CD133 and Extracellular Matrix Molecules in Malignant Brain Tumors," Neuroscience and Medicine, Vol. 2 No. 4, 2011, pp. 392-396. doi: 10.4236/nm.2011.24052.
References
[1]   T. Reya, S. J. Morrison, M. F. Clarke, et al., “Stem Cells, Cancer, and Cancer Stem Cells,” Nature, Vol. 414, No. 6859, 2001, pp. 105-111. doi:10.1038/35102167

[2]   H. D. Hemmati, J. Nakano, J. A. Lazareff, et al., “Cancerous Stem Cells Can Arise from Pediatric Brain Tumors,” Proceedings of the National Academy of Sciences USA, Vol. 100, 2003, pp. 15178-15183. doi:10.1073/pnas.2036535100

[3]   A. M. Bleau, D. Hambardzumyan, T. Ozawa, et al., “PTEN/PI3K/Akt Pathway Regulates the Side Population Phenotype and ABCG2 Activity in Glioma Tumor Stem-Like Cells,” Cell Stem Cell, Vol. 4, No. 3, 2009, pp. 226-235. doi:10.1016/j.stem.2009.01.007

[4]   M. D. Taylor, H. Poppleton, C. Fuller, et al., “Radial Glia Cells Are Candidate Stem Cells of Ependymoma,” Cancer Cell, Vol. 8, No. 4, 2005, pp. 323-335. doi:10.1016/j.ccr.2005.09.001

[5]   T. N. Ignatova, V. G. Kukekov, E. D. Laywell, et al., “Human Cortical Glial Tumors Contain Neural Stem-Like Cells Expressing Astroglial and Neuronal Markers in Vitro,” Glia, Vol. 39, No. 3, 2002, pp. 193-206. doi:10.1002/glia.10094

[6]   X. Fan and C. G. Eberhart, “Medulloblastoma Stem Cells,” Journal of Clinical Oncology, Vol. 26, No. 17, 2008, pp. 2821-2827. doi:10.1200/JCO.2007.15.2264

[7]   D. Beier, P. Hau, M. Proescholdt, et al., “CD133 (+) and CD133 (—) Glioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles,” Cancer Research, Vol. 67, No. 9, 2007, pp. 4010-4015. doi:10.1158/0008-5472.CAN-06-4180

[8]   A. T. Ogden, A. E. Waziri, R. A. Lochhead, et al., “Identification of A2B5+ CD133-Tumorinitiating Cells in Adult Human Gliomas,” Neurosurgery, Vol. 62, No. 2, 2008, pp. 505-514. doi:10.1227/01.neu.0000316019.28421.95

[9]   G. Liu, X. Yuan, Z. Zeng, et al., “Analysis of Gene Expression and Chemoresistance of CD133+ Cancer Stem Cells in Glioblastoma,” Molecular Cancer, Vol. 5, 2006, p. 67. doi:10.1186/1476-4598-5-67

[10]   B. Sivasankaran, M. Degen, A. Ghaffari, et al., “Tenascin-C Is a Novel RBPJkappa-Induced Target Gene for Notch Signaling in Gliomas,” Cancer Research, Vol. 69, 2009, pp. 458-465. doi:10.1158/0008-5472.CAN-08-2610

[11]   X. Fan, I. Mikolaenko, I. Elhassan, et al., “Notch1 and Notch2 Have Opposite Effects on Embryonal Brain Tumor Growth,” Cancer Research, Vol. 64, No. 21, 2004, pp. 258-262. doi:10.1158/0008-5472.CAN-04-1446

[12]   G. F. Weber and S. Ashkar, “Molecular Mechanisms of Tumor Dissemination in Primary and Metastatic Brain Cancers,” Brain Research, Vol. 53, No. 4, 2000, pp. 421-424.

[13]   S. Yoshida and H. Takahashi, “Expression of Extracellular Matrix Molecules in Brain Metastasis,” Journal of Surgical Oncology, Vol. 100, No. 1, 2009, pp. 65-68. doi:10.1002/jso.21296

[14]   S. Bao, Q. Wu, R. E. McLendon, et al., “Glioma Stem Cells Promote Radio-Resistance by Preferential Activation of the DNA Damage Response,” Nature, Vol. 444, No. 7120, 2006, pp. 756-760. doi:10.1038/nature05236

[15]   L. Dang, X. Fan, A. Chaudhry, et al., “Notch3 Signaling Initiates Choroid Plexus Tumor Formation,” Oncogene, Vol. 25, No. 3, 2006, pp. 487-491.

[16]   R. H. Goldbrunner, J. J. Bernstein and J. C. Tonn, “Cell-Extracellular Matrix Interaction in Glioma Invasion,” Acta Neurochir (Wien), Vol. 141, 1999, pp. 295- 305. doi:10.1007/s007010050301

[17]   Y. Miyamoto, A. Maitra, B. G. Zech, et al., “Notch Mediates TGF Alpha-Induced Changes in Epithelial Differentiation during Pancreatic Tumor Genesis,” Cancer Cell, Vol. 3, No. 6, 2003, pp. 565-576. doi:10.1016/S1535-6108(03)00140-5

[18]   P. O. Charoenrat, P. Rhys-Evans and S. A. Eccles, “Expression of Matrixmetalloproteinases and Their Inhibitors Correlates with Invasion and Metastasis in Squamous Cell Carcinoma of the Head and Neck,” Arch Otolaryngol Head Neck Surgery, Vol. 127, 2000, pp. 813-820.

[19]   S. G. Piccirillo, B. A. Reynolds, N. Zanetti, et al., “Bone Morphogenetic Proteins Inhibit the Tumorigenic Potential of Human Brain Tumor-Initiating Cells,” Nature, Vol. 444, No. 7120, 2006, pp. 761-765. doi:10.1038/nature05349

 
 
Top