NM  Vol.2 No.4 , December 2011
The Functions of the Amyloid Precursor Protein Gene and Its Derivative Peptides: III Pharmacological Studies
ABSTRACT
Pharmacological studies reveal APP and Aβ have interactions with glutamate and calcium, cytokines, copper/zinc chelators, secretases and presenilins, nicotinic receptors, acetycholinesterase, neurotrophins, non-steroidal anti-inflame-matory drugs, monoclonal antibodies to Aβ, protease inhibitors, oestrogen, homocysteine, immediate early genes such as c-fos or c-jun and cholesterol. These functional and pharmacological observations highlight the need for greater understanding of APP and Aβ in brain function and have implications for clinical trials.

Cite this paper
nullP. Panegyres and E. Atkins, "The Functions of the Amyloid Precursor Protein Gene and Its Derivative Peptides: III Pharmacological Studies," Neuroscience and Medicine, Vol. 2 No. 4, 2011, pp. 397-409. doi: 10.4236/nm.2011.24053.
References
[1]   Y. Takumi, A. Matsubara, E. Rinvik and O. P. Otterson, “The Arrangement of Glutamate Receptors at Excitatory Synapses,” Annals of the New York Academy of Sciences, Vol. 868, 1999, pp. 474-482. doi:10.1111/j.1749-6632.1999.tb11316.x

[2]   J.Y. Koh, L. L. Yang and C. W. Cottman., “Beta Amyloid Protein Increases the Vulnerability of Cultured Cortical Neurons to Excitotoxic Damages,” Brain Research, Vol. 433, 1990, pp. 315-320. doi:10.1016/0006-8993(90)91355-K

[3]   J. I. M. Dubinsky, “Examination of the Role of Calcium in Neuronal Death,” Annals of the New York Academy of Sciences, Vol. 679, No. 1, 1993, pp. 34-42. doi:10.1111/j.1749-6632.1993.tb18287.x

[4]   M. P. Mattson, K. Furukawa, “Signalling Events Regulating the Neurodeveolpmental Triad. Glutamate and Secreted Forms of Beta Amyloid Precursor Protein as Examples,” Perspectives on Developmental Neurobiology, Vol. 5, No. 1998, pp. 337-352.

[5]   P. K. Panegyres, “The Functions of the Amyloid Precursor Protein Gene,” Reviews in Neuroscience, Vol. 12, 2001, pp. 1-39. doi:10.1515/REVNEURO.2001.12.1.1

[6]   M. P. Mattson, Z. H. Guo and J. D. Geiger, “Secreted Form of Amyloid Precursor Protein Enhances Basal Glucose and Glutamate Transport and Protects against Oxidative Impairment of Glucose and Glutamate Transport in Synaptosomes by a Cyclic GMP Mediated Mechanism,” Journal of Neurochemistry, Vol. 73, 1999, pp. 532-537. doi:10.1046/j.1471-4159.1999.0730532.x

[7]   M. P. Mattson and W. A. Pederson, “The Effects of APP Derivatives and Oxidative Stress on Basal Forebrain Cholinergic Systems in Alzheimer’s Disease,” International Journal of Developmental Neuroscience, Vol. 16, No. 7-8, 1998, pp. 737-753. doi:10.1016/S0736-5748(98)00082-3

[8]   I. I. Kruman and M. P. Mattson, “Pivotal Role of Mitochondrial Calcium Uptake in Neural Cell Apoptosis and Necrosis,” Journal of Neurochemistry, Vol. 72, No. 2, 1999, pp. 529-540. doi:10.1046/j.1471-4159.1999.0720529.x

[9]   R. P. Wernyj, M. P. Mattson and S. Christakos, “Expression of Calbindin-D28k in C6 Glial Cells Stabilizes Intracellular Calcium Levels and Protects Against Apoptosis Induced by Calcium Ionophore and Amyloid B Peptide,” Brain Research: Molecular Brain Research, Vol. 64, 1999, pp. 69-79. doi:10.1016/S0169-328X(98)00307-6

[10]   Q. Guo, N. Robinson and M. P. Mattson, “Secreted P-Amyloid Precursor Protein Counteracts the Pro-Apoptotic Action of Mutant Presenilin 1 Bioactivation of NF-KB and Stabilizattion of Calcium Homeostasis,” Journal of Biological Chemistry, Vol. 273, No. 20, 1998, pp. 12341-12351. doi:10.1074/jbc.273.20.12341

[11]   K. Furukawa and M. P. Mattson, “The Transcription Factor NF-KB Mediates Increases in Calcium Currents and Decreases in NMDA—and AMPA I Kainate—Induced Currents Induced by Tumor Necrosis Factor A in Hippocampal Neurons,” Journal of Neurochemistry, Vol. 70, No. 5, 1998, pp. 1876-1886. doi:10.1046/j.1471-4159.1998.70051876.x

[12]   E. Masliah, J. Raber, M. Afford, N. Mallory, N. P. Mattson, D. Yang, D. Wong and L. Nucke, “Amyloid Protein Precursor Stimulates Excitatory Amino Acid Transport. Implications for Roles in Neuroprotection and Pathogenesis,” Journal of Biological Chemistry, Vol. 273, No. 20, 1998, pp. 12548-12554. doi:10.1074/jbc.273.20.12548

[13]   M. P. Mattson, “Cellular Actions of Beta- Amyloid Precursor Protein and Its Soluble and Fibrilogenic Derivatives,” Physiological Reviews, Vol. 77, No. 4, 1997, pp. 1081-1132.

[14]   M. Tolar, J. N. Keller, S. Chan, M. P. Mattson, N. A. Marques and N. K. Crutcher, “Truncated Apolipoprotein E (APOE) Causes Increased Intracellular Calcium and May Mediate APOE Neurotoxicity,” Journal of Neuroscience, Vol. 19, No. 16, 1999, pp. 7100-7110.

[15]   M. P. Mattson, F. N. LaFerla, S. L. Chang, M. A. Leissring, P. N. Shepel and J. D. Geiger, “Calcium Signalling in the ER, Its Role in Neuronal Plasticity and Degenerative Disorders,” Trends in Neuroscience, Vol. 23, No. 5, 2000, pp. 222-229. doi:10.1016/S0166-2236(00)01548-4

[16]   J. T. Greenamyre, A. B. Penny, A. B. Young, D’Amato, S. P. Hicks and I. Sholson, “Alterations in L-glutamate Binding in Alzheimer`s and Huntington’s Diseases,” Science, Vol. 227, No. 4693, 1985, pp. 1496-1499. doi:10.1126/science.2858129

[17]   J. T. Greenamyre, A. B. Penny, A. B. Young and D’Amato, “Dementia of the Alzheimer’s Type, Changes in Hippocampal L-[3H] Glutamate Binding,” Journal of Neurochemistry, Vol. 48, 1987, pp. 543-55l. doi:10.1111/j.1471-4159.1987.tb04127.x

[18]   J. W. Geddes, C. Chang, S. N. Cooper, I. T. Loft and C. W. Cotman, “Density and Distribution of NMDA Receptors in Human Hippocampus in Alzheimer’s Disease,” Brain Research, Vol. 399, 1986, pp. 156-161. doi:10.1016/0006-8993(86)90611-6

[19]   D. T. Monaghan, J. W. Geddes, D. Yao, C. Chung and C. W. Cotman, “[3H] TCP Binding Site in A1zheimer’s Disease,” Neuroscience Letters, Vol. 73, No. 2, 1987, pp. 197-200. doi:10.1016/0304-3940(87)90017-6

[20]   R. H. P. Porter, P. J. Robert and R. S. J. Briggs, “NMDA Receptor Status in Elderly Normal Individuals and Those with AD,” Annals of the New York Academy of Sciences, Vol. 695, No. 1, 1993, pp. 50-53.

[21]   J. Ulas, L. C. Brunner, L. W. Geddes, W. Choe and C. W. Cotman, “N-methyl-D-Aspartate Receptor Complex in the Hippocampus of Elderly Normal Individuals and Those with AD,” Neuroscience, Vol. 49, No. 1, 1992, pp. 45-61. doi:10.1016/0306-4522(92)90075-D

[22]   J.J. Cha, L. A. Farrell, S. F. Ashmed, A. Frey, K.K. Hsaio-Ashe, A. B. Young, J. B. Penney, J. J. Locascio, B. T. Hyman and M. C. Irizarry, “Glutamate Receptor Dysregulation in the Hippocampus of Transgenic Carrying Mutated Human Amyloid Precursor Protein,” Neurobiological Disorders, Vol. 81, 2000, pp. 90-102.

[23]   H. Monyer, R. Sprengel, R. Schoepfer, A. Herb, M. Higuchi, H. Lomeli, N. Burnashev, B. Sakmann and P. H. Seeburg, “Heteromeric NMDA Receptors, Molecular and Functional Distinction of Subtypes,” Science, Vol. 256, No. 5060, 1992, pp. 1217-1221. doi:10.1126/science.256.5060.1217

[24]   P. K. Panegyres, K. Zafiris-Toufexis and B. A. Kakulas, “The mRNA of the NR1 Subtype of Glutamate Receptor in Alzheimer’s Disease,” Journal of Neural Transmission, Vol. 109, 2002, pp. 77-89. doi:10.1007/s702-002-8238-9

[25]   M. T. Webster, N. Amin, B. Pearce and P. T. Francis, “Glutamate Toxicity in Rat Cultured Neurones, Effects on Amyloid Precursor-Like Protein 2,” Neuroscience Letters, Vol. 276, No. 2, 1999, pp. 107-110. doi:10.1016/S0304-3940(99)00800-9

[26]   D. T. Stephenson and J. A. Clemens, “Metabotropic Glutamate Activation in Vivo Induces Intraneuronal Amyloid Immunoreactivity in Guinea Pig Hippocampus,” Neurochemistry International, Vol. 33, No. 1, 1998, pp. 83-93. doi:10.1016/S0197-0186(05)80012-9

[27]   B. Winblad and N. Poritis, “Memantine in Severe Dementia, Results of the 9M-Best Study (Benefit and Efficacy in Severely Demented Patients during Treatment with Memantine),” International Journal of Geriatric Psychiatry, Vol. 14, No. 2, 1999, pp. 135-146. doi:10.1002/(SICI)1099-1166(199902)14:2<135::AID-GPS906>3.0.CO;2-0

[28]   B. Reisberg, R. Doody, A. Stoffler, F. Schmitt, S. Ferris, H. J. Mobius and Memantine Study Group, “Memantine in Moderate-to-Severe Alzheimer’s Disease,” New England Journal of Medicine, Vol. 348, 2003, pp. 1333-1341. doi:10.1056/NEJMoa013128

[29]   R. J. Donnelly, A. J. Friedhoff, B. Beer, A. J. Blume and M. P. Vite, “Interleukin-1 (IL-1) Stimulates the Beta-Amyloid Precursor Protein Promotor,” Cell Molecular Neurobiology, Vol. 10, 1990, pp. 485-495. doi:10.1007/BF00712843

[30]   D. Goldgaber, H. W. Harris and T. Hla, “Interleukin 1 Regulates Synthesis of Amyloid B-Protein Precursor mRNA in Human Endothelial Cells,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 86, 1989, pp. 7606-7610. doi:10.1073/pnas.86.19.7606

[31]   G. Forloni, F. Demicheli, S. Giorgi, C. Bendotti and N. Ageretti, “Expression of APP mRNAs in Endothelial, Neuronal and Glial Cells, Modulation by Interleukin-1,” Molecular Brain Research, Vol. 16, No. 1-2, 1992, pp. 128-134. doi:10.1016/0169-328X(92)90202-M

[32]   G. E. Maestre, B. A. Tate, R. E. Majocha and C. A. Marotta, “Membrane Surface Ruffling in Cells that Over-Express Alzheimer Amyloid β/A4 C-Terminal Peptide,” Brain Research, Vol. 62, 1993, pp. 145-149. doi:10.1016/0006-8993(93)90311-A

[33]   B. Brugg, Y. L. Dubreuil, G. Huber, E. E. Wollman, N. Delhaye-Bouchaud and J. Mariani, “Inflammatory Processes Induce B-Amyloid Precursor Protein Changes in Mouse Brain,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 92, 1995, pp. 3032-3035. doi:10.1073/pnas.92.7.3032

[34]   J. G. Sheng, F. A. Boop, R. E. Mrak and W. S. T. Griffin, “Increased Neuronal B-Amyloid Precursor Protein Expression in Human Temporal Lobe Epilepsy, Association with Interleukin-1a Immunoreactivity,” Journal of Neurochemistry, Vol. 62, 1994, pp. 1872-1879.

[35]   P. K. Panegyres and J. Hughes, “The Neuroprotective Effects of the Recombinant Interleukin-1 Receptor Antagonist Rhil-1ra after Excitotoxic Stimulation with Kainic Acid and Its Relationship to the Amyloid Precursor Protein Gene,” Journal of Neurological Sciences, Vol. 154, No. 2, 1998, pp. 123-132. doi:10.1016/S0022-510X(97)00214-1

[36]   M. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell and W. R. Markesbery. Copper, Iron and Zinc in Alzheimer’s Disease Senile Plaques,” Journal of Neurological Sciences, Vol. 158, No. 1, 1998, pp. 47-52. doi:10.1016/S0022-510X(98)00092-6

[37]   A. I. Bush, W. H. Pettingal, G. Multhaup, M. D. Paradis, J. P. Vonsattel, J. F. Gusella, K. Beyreuther, C. L. Masters and R. E. Tanzi, “Rapid induction of Alzheimer Aβ Amyloid Formation by Zinc,” Science, Vol. 265, No. 5177, 1994, pp. 1464-1467. doi:10.1126/science.8073293

[38]   A. I. Bush, W. H. Pettingell, M. D. Paradis and R. E. Tanzi, “Modulation of A beta Adhesiveness and Secretase Site Cleavage By Zinc,” Journal of Biological Chemistry, Vol. 269, No. 16, 1994, pp. 12152-12158.

[39]   X Huang, C. S. Atwood, R. D. Moir, M. A. Hartshorn, J. P. Vonsattel, R. E. Tanzi and A. I. Bush, “Zinc-Induced Alzheimer’s Abeta1-40 Aggregation is Mediated by Conformational Factors”, Journal of Biological Chemistry, Vol. 272, No. 42, 1997, pp. 26464-26470. doi:10.1074/jbc.272.42.26464

[40]   C. S. Atwood, R. D. Moir, X. Huang, R. C. Scarpa, N. M. E. Bacarra, D. M. Romano, M. K. Hartshorn, R. E. Tanzi and A. I. Bush, “Dramatic Aggregation of Alzheimer Abeta by Cu(II) is Induced by Conditions Representing Physiological Acidosis,” Journal of Biological Chemistry, Vol. 273, No. 21, 1998, pp. 12817-12826. doi:10.1074/jbc.273.21.12817

[41]   R. A. Cherny, J. T. Legg, C. A. Mclean, D. P. Fairlie, X. Huang, C. S. Atwood, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, “Aqueous Dissolution of Alzheimer’s Disease Aβ Amyloid Deposits by Biometal Depletion”, Journal of Biological Chemistry, Vol. 274, No. 33, 1999, pp. 23223-23228. doi:10.1074/jbc.274.33.23223

[42]   R. A. Cherny, C. S. Atwood, M. E. Xilinas, D. N. Gray, W. D. Jones, C. A. Mclean, K. J. Barnham, I. Volitakis, F. W. Fraser, Y. S. Kim, X. Huang, L. E. Goldstein, R. D. Moir, J. T. Lim, K. Beyreuther, H. Zheng, R. E. Tanzi, C. L. Masters and A. I. Bush, “Treatment with Copper-Zinc Chelator Markedly and Rapidly Inhibits B-Amyloid Accumulation In Alzheimer’s Disease Transgenic Mice,” Neurology, Vol. 30, No. 3, 2001, pp. 665-676.

[43]   G. Multhaup, A. Schlicksupp, L. Hesse, D. Beher, T. Rupper, C. L. Masters and K. Beyreuther, “The Amyloid Precursor Protein of Alzheimer’s Disease in the Reduction of Copper (II) to Copper (I),” Science, Vol. 271, No. 5254, 1996, pp. 1406-1409. doi:10.1126/science.271.5254.1406

[44]   M. R. Gunther, P. M. Hanna, R. P. Mason and M. S. Cohen, “Hydroxyl Radical Formation from Cuprous Ion and Hydrogen Peroxide, A Spin-Trapping Study,” Archives of Biochemistry and Biophysics, Vol. 316, No. 1, 1995, pp. 515-522. doi:10.1006/abbi.1995.1068

[45]   M. A. Deibel, W. D. Ehmann and W. R. Markesbery, “Copper, Iron and Zinc Imbalances in Severely Degenerated Brain Regions in Alzheimer’s Disease, Possible Relation to Oxidative Stress,” Journal of Neurological Sciences, Vol. 143, No. 1, 1996, pp. 137-142. doi:10.1016/S0022-510X(96)00203-1

[46]   M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell and W. R. Markesbery, “Copper, Iron and Zinc in Alzheimer’s Disease Senile Plaques,” Journal of Neurological Sciences, Vol. 158, No. 1, 1998, pp. 47-52. doi:10.1016/S0022-510X(98)00092-6

[47]   G. Multhaup, T. Ruppert, A. Schlicksupp, L. Hesse, E. Bill, R. Pipkor, C. L. Masters and K. Beyreuther, “Copper-Binding Amyloid Precursor Protein Undergoes a Site-Specific Fragmentation in the Reduction of Hydrogen Peroxide,” Biochemistry, Vol. 37, No. 20, 1998, pp. 7224-7230. doi:10.1021/bi980022m

[48]   C. W. Ritchie, A. I. Bush,A. Mackinnon, S. Macfarlane, M. Mastwyk, L. Macgregor, L. Kiers, R. Chern, Q. X. Li, A. Tammer, D. Carrington, C. Mavros, I. Volitakis, M. Xilinas, D. Ames, S. Davis, K. Beyreuther, R. E. Tanzi and C. L. Masters, “Metal-Protein Attenuation with Iodochlorhydroxyquin (Clioquinol) Targeting Abeta Amyloid Deposition and Toxicity in Alzheimer Disease, A Pilot Phase 2 Clinical Trial,” Archives of Neurology, Vol. 60, No. 12, 2003, pp. 1685-1691. doi:10.1001/archneur.60.12.1685

[49]   J. A. Duce, A. Tsatsanis, M. A. Cater, S. A. James, E. Robb, K. Wikhe ,S. L. Leong, K. Perez, T. Johanssen, M. A. Greenough, H. H. Cho, D. Galatis,R. D. Moir, C. L. Masters, C. Mclean, R. E. Tanzi, R. Cappai, K. J. Barnham, G. D. Ciccotosto, J. T. Rogers and A. I. Bush, “Iron-Export Ferroxidase Activity of β-Amyloid Precursor Protein is Inhibited by Zinc in Alzheimer’s Disease,” Cell, Vol. 142, No. 6, 2010, pp. 857-867. doi:10.1016/j.cell.2010.08.014

[50]   M. S. Wolfe, W. Xia, B. L. Ostaszewski, T. S. Diehl, W. T. Kimberly, and D. J. Selkoe, “Two Transmembrane Aspartates in Presenilin-1 Required for Presenilin Endoproteolysis and Gamma-Secretase Activity,” Nature, Vol. 398, No. 6727, 1999, pp. 513-517. doi:10.1038/19077

[51]   Y. Shen and R. Li, “Expressing Mrnas for Presenilin-1 and Amyloid Precursor Protein (APP-695) from Same Neuronal Populations in Rat Hippocampus,” Brain Research Bulletin, Vol. 46, No. 3, 1998, pp. 233-236. doi:10.1016/S0361-9230(97)00455-3

[52]   D. Beher, C. Elle, J. Underwood, J. B. Davis, R. Ward, E. Karran, C. L. Masters, K. Beyreuther and G. Multhaup, “Proteolytic Fragments of Alzheimer’s Disease-Associated Presenilin 1 Are Present in Synaptic Organelles and Growth Cone Membranes of Rat Brain,” Journal of Neurochemistry, Vol. 72, No. 4, 1999, pp. 1564-1573. doi:10.1046/j.1471-4159.1999.721564.x

[53]   A. Weidemann, K. Paliga, U. Kurrwang, C. Czech, G. Evin, C. L. Masters and K Beyreuther, “Formation of Stable Complexes Between Two Alzheimer’s Disease Gene Products, Presenilin-2 and Beta-Amyloid Precursor Protein,” Nature Medicine, Vol. 3, 1997, pp. 328-332. doi:10.1038/nm0397-328

[54]   W. Xia, J. Zhang, R. Perez, E. H. Koo and D. J. Selkoe, “Interaction Between Amyloid Precursor Protein and Presenilins in Mammalian Cells, Implications for the Pathogenesis of Alzheimer Disease,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, 1997, pp. 8208-8213. doi:10.1073/pnas.94.15.8208

[55]   N. N. Dewji and S. J. Singer, “Specific Intercellular Binding of the Beta-Amyloid Precursor Protein to the Presenilins Induces Intercellular Signaling, Its Significance for Alzheimer’s Disease,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, 1998, pp. 15055-15060. doi:10.1073/pnas.95.25.15055

[56]   R. N. Rosenberg, “Explaining the Cause of the Amyloid Burden in Alzheimer Disease,” Archives of Neurology, Vol. 59, No. 9, 2002, pp. 1367-1368. doi:10.1001/archneur.59.9.1367

[57]   S. L. Rogers and L. T. Friedhoff, “The Efficacy and Safety of Donepezil in Patients with Alzheimer’s Disease, Results of a US Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial,” Dementia, Vol. 7, No. 6, 1996, pp. 293-303.

[58]   S. L. Rogers, R. A. Doody, R. C. Mohs and L. T. Friedhoff, “Donepezil Improves Cognition and Global Function in Alzheimer’s Disease, A 15-Week, Double-Blind, Placebo-Controlled Study,” Archives of Internal Medicine, Vol. 158, No. 9, 1998, pp. 1021-1031. doi:10.1001/archinte.158.9.1021

[59]   S. L. Rogers, M. R. Farlow, R. S. Doody, R. Mohs and L. T. Friedhoff, “A 24-Week, Double-Blind, Placebo-Controlled Trial of Donepezil in Patients with Alzheimer’s Disease,” Neurology, Vol. 50, No. 1, 1998, pp. 136-145.

[60]   A. Burns, M. Rossor, J. Hecker, S. Gauthier, H. Petit, H. J. Moller, S. L. Rogers and L. T. Friedhoff, “The Effects of Donepezil in Alzheimer’s Disease – Results from a Multinational Trial,” Dementia and Geriatric Cognitive Disorders, Vol. 10, No. 3, 1999, pp. 237-244.

[61]   P. N. Tariot, P. R. Solomon, J. C. Morris, P. Kershaw, S. Lilienfeld and C. Ding, “A 5-Month, Randomized, Placebo-Controlled Trial of Galantamine in AD,” Neurology Vol. 54, 2000, pp. 2269-2276.

[62]   M. A. Raskind, P. A. Cyrus, B. B. Ruzicka and B. I. Gulanski, “The Effects of Metrifonate on the Cognitive, Behavioural and Functional Performance of Alzheimer’s Disease Patients,” Journal of Clinical Psychiatry, Vol. 60, No. 5, 1999, pp. 318-325. doi:10.4088/JCP.v60n0510

[63]   M. Rosler, R. Anand, A. Cicin-Sain, S. Gauthier, Y. Agid, P. Dal-Bianco, H. B. Stahelin, R. Hartman and M. Gharabawi, “Efficacy and Safety of Rivastigmine in Patients with Alzheimer’s Disease, International Randomised Controlled Trial,” British Medical Journal, Vol. 318, No. 7184, 1999, pp. 633-640.

[64]   G. Sberna, J. Saez-Valero, Q. X. Li, C. Czech, K Beyreuther, C. L. Masters, C. A. Mclean and D. H. Small, “Acetylcholinesterase Is Increased in the Brains of Transgenic Mice Expressing the C-Terminal Fragment (CT100) of the Beta-Amyloid Precursor of Alzheimer’s Disease,” Journal of Neurochemistry, Vol. 71, No. 2, 1998, pp. 723-731. doi:10.1046/j.1471-4159.1998.71020723.x

[65]   P. Tiraboschi, L. A. Hansen, M. Alford, A. Merdes, E. Masliah, L. J. Thal and J. Corey-Bloom, “Early and Widespread Cholinergic Losses Differentiate Dementia with Lewy Bodies from Alzheimer Disease,” Archives of General Psychiatry, Vol. 59, No. 10, 2002, pp. 946-951. doi:10.1001/archpsyc.59.10.946

[66]   P. J. Whitehouse, D. L. Price, R. G. Struble, A. W. Clark, J. T. Coyle and M. R. Delon, “Alzheimer’s Disease and Senile Dementia, Loss of Neurons in the Basal Forbrain,” Science, Vol. 215, No. 4537, 1982, pp. 1237-1239. doi:10.1126/science.7058341

[67]   M. Weinstock, “The Pharmocotherapy of Alzheimer’s Disease Based on Cholinergic Hypothesis, An Update,” Neurodegeneration, Vol. 4, No. 4, 1995, pp. 349-356. doi:10.1006/neur.1995.0042

[68]   E. Giacobini, “The Cholinergic System in Alzheimer’s Disease,” Progressive Brain Research, Vol. 84, 1990, pp. 321-332. doi:10.1016/S0079-6123(08)60916-4

[69]   S. Rossner, U. Ueberham, R. Schliebs, J. R. Perez-Polo and V. Bigl, “P75 and TRKA Receptor Signalling Independently Regulate Amyloid Precursor Protein mRNA Expression, Isoform Composition, and Protein Secretion in PC12 Cells,” Journal of Neurochemistry, Vol. 71, 1998, pp. 757-766. doi:10.1046/j.1471-4159.1998.71020757.x

[70]   G. P. Lim, F. Yang, T. Chu, P. Chen, W. Beech, B. Teter, T. Tran, O. Ubeda, K. Hsiao Ashe, S. A. Frautschy and G. M. Cole, “Ibuprofen Suppresses Plaque Pathology and Inflammation in a Mouse Model for Alzheimer’s Disease,” Journal of Neuroscience, Vol. 20, No. 15, 2000, pp. 5709- 5714.

[71]   C. M. Beard, S. C. Waring, P. C. O’Brien, L. T. Kurland and E. Kokmen, “Nonsteroidal Anti-Inflammatory Drug Use and Alzheimer’s Disease, A Case-Control Study in Rochester, Minnesota, 1980 Through 1984,” Mayo Clinic Procedures, Vol. 73, 1998, pp. 951-955. doi:10.4065/73.10.951

[72]   R. K. Lee and R. J. Wurtman, “Regulation of APP Synthesis and Secretion by Neuroimmunophilin Ligands and Cyclooxygenase Inhibitors,” Annals of the New York Academy of Sciences, Vol. 920, No. 1, 2000, pp. 261-268. doi:10.1111/j.1749-6632.2000.tb06934.x

[73]   R. K. Lee, S. Knapp and R. J. Wurtman, “Prostaglandin E2 Stimulates Amyloid Precursor Protein Gene Expression, Inhibition by Immunosuppressants,” Journal of Neuorsciences, Vol. 19, No. 3, 1999, pp. 940-947.

[74]   D. Schenk, R. Barbour, W. Dunn, G. Gordon, H. Grajeda, T. Guido, K. Hu, J. Huang, K. Johnson-Wood, K. Khan, D. Kholodenko, M. Lee, Z. Liao, I. Lieberburg, R. Motter, L. Mutter, F. Soriano, G. Shopp, N. Vasquez, C. Vandevert, S. Walker, M. Wogulis, T. Yednock, D. Games and P. Seubert, “Immunization with Amyloid-β Attenuates Alzheimer-Disease-Like Pathology in PDAPP Mouse,” Nature, Vol. 400, No. 6740, 1999, pp. 173-177. doi:10.1038/22124

[75]   T. T. Rohn, K. J. Ivins, B. A. Bahr, C. W. Cotman and D. H. Cribbs, “A Monoclonal Antibody to Amyloid Precursor Protein Induces Neuronal Apopotosis,” Journal of Neurochemistry, Vol. 74, No. 6, 2000, pp. 2331-2342. doi:10.1046/j.1471-4159.2000.0742331.x

[76]   J. A. Nicoll, D. Wilkinson, C. Holmes, P. Steart, H. Markham and R. O. Weller, “Neuropathology of Human Alzheimer Disease after Immunization with Amyloid- Beta Peptide, A Case Report,” Nature Medicine, Vol. 9, No. 4, 2003, pp. 448-452. doi:10.1038/nm840

[77]   I. Ferrer, M. Boada Rovira, M. L. Sanchez Guerra, M. J. Rey and F. Costa-Jussa, “Neuropathology and Pathogenesis of Encephalitis Following Amyloid-Beta Immunization in Alzheimer’s Disease,” Brain Pathology, Vol. 14, No. 1, 2004, pp. 11-20. doi:10.1111/j.1750-3639.2004.tb00493.x

[78]   M. Mullan, F. Crawford, K. Axelman, H. Houlden, L. Lilius, B. Winbald and L. Lannefelt, “A Pathogenic Mutation for Probable Alzheimer’s Disease in the APP Gene at the N-Terminus of Beta-Amyloid,” Nature Genetics, Vol. 1, 1992, pp. 345-347. doi:10.1038/ng0892-345

[79]   M. L. Steinhilb, R. S. Turner and J. R. Gaut, “The Protease Inhibitor, MG132, Blocks Maturation of the Amyloid Precursor Protein Swedish Mutant Preventing Cleavage By β-Secretase,” Journal of Biological Chemistry, Vol. 276, No. 21, 2001, pp. 4476-4484. doi:10.1074/jbc.M008793200

[80]   J. F. Hare, “Protease Inhibitors Divert Amyloid Precursor Protein to the Secretory Pathway,” Biochemical and Biophysical Research Communications, Vol. 281, No. 5, 2001, pp. 1298-1303. doi:10.1006/bbrc.2001.4507

[81]   R. Yamin, E. G. Malgeri, J. A. Sloane, W. T. Mcgraw and C. R. Abraham, “Metalloendopeptidase EC 3.4.24.15 Is Necessary for Alzheimer’s Amyloid-β Peptide Degradation,” Journal of Biological Chemistry, Vol. 274, 1999, pp. 1877-18784.

[82]   F. Checler, C. A. Da Costa, K. Ancolio, N. Chevallier, E. Lopez-Perez and F. Marambaud, “Role of the Proteasome in Alzheimer’s Disease,” Biochemical and Biophysical ACTA, Vol. 1502, No. 1, 2000, pp. 133-138.

[83]   Z. Kouchi, H. Sorimachi, K. Suzuki and S. Ishiura, “Proteasome Inhibitors Induce the Association of Alzheimer’s Amyloid Precursor Protein with Hsc73,” Biochemical and Biophysical Research Communications, Vol. 254, No. 3, 1999, pp. 804-810. doi:10.1006/bbrc.1998.9977

[84]   M. Citron, T. Diehl, G. Gordon, A. Biere, P. Seubert and D. J. Selkoe, “Evidence That the 42- And 40-Amino Acid Forms of Amyloid Beta Protein Are Generated from the Beta-Amyloid Precursor Protein by Different Protease Activities,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 93, 1996, pp. 13170-13175. doi:10.1073/pnas.93.23.13170

[85]   J. Higaki, D. Quon, Z. Zhong and B. Cordell, “Inhibition of Beta-Amyloid Formation Identifies Proteolytic Precursors and Subcellular Site of Catabolism,” Neuron, Vol. 14, No. 3, 1995, pp. 651-659. doi:10.1016/0896-6273(95)90322-4

[86]   H.-W. Klafki, D. Abramowski, R. Swoboda, P. A. Paganetti and M. Staufenbiel, “The Carboxyl Termini of Beta-Amyloid Peptides 1-40 and 1-42 Are Generated by Distinct Gamma-Secretase Activities,” Journal of Biological Chemistry, Vol. 271, No. 8, 1996, pp. 28655- 28659. doi:10.1074/jbc.271.45.28655

[87]   T. Yamazaki, C. Haas, T. C. Saido, S. Omura and Y. Ihara, “Specific Increase in Amyloid Beta-Protein 42 Secretion Ratio by Calpain Inhibition,” Biochemistry, Vol. 36, 1997, pp. 8377-8383. doi:10.1021/bi970209y

[88]   H. W. Klafki, P. A. Paganetti, B. Sommer and M. Staufenbiel, “Calpain Inhibitor I Decreases Beta A4 Secretion from Human Embryonal Kidney Cells Expressing Beta-Amyloid Precursor Protein Carrying the APP670/ 671 Double Mutation,” Neuroscience Letters, Vol. 201, No. 1, 1995, pp. 29-32. doi:10.1016/0304-3940(95)12122-K

[89]   A. Viniski, C. Michaud, J. Powers and M. Orlowski, “Inhibition of the Chymotrypsin-Like Activity of the Pituitary Multicatalytic Proteinase Complex,” Biochemistry, Vol. 31, 1992, pp. 9421-9428. doi:10.1021/bi00154a014

[90]   M. Citron, T. Diehl, G. Gordon, A. Biere, P. Seubert and E. Selkoe, “Evidence That the 42- and 40-Amino Acid Forms of Amyloid Beta Protein Are Generated from the Beta-Amyloid Precursor Protein By Different Protease Activities,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 93, 1996, pp. 13170-13175. doi:10.1073/pnas.93.23.13170

[91]   H. W. Klafki, D. Abramowski, R. Swoboda, P. A. Paganetti and M. Staufenbiel, “The Carboxyl Termini of Beta-Amyloid Peptides 1-40 and 1-42 Are Generated by Distinct Gamma-Secretase Activities,” Journal of Biological Chemistry, Vol. 271, No. 45, 1996, pp. 28655- 28659. doi:10.1074/jbc.271.45.28655

[92]   T. Yamazaki, C. Haas, T. C. Saido, S. Omura and Y. Ihara, “Specific Increase in Amyloid Beta-Protein 42 Secretion Ratio by Calpain Inhibition,” Biochemistry, Vol. 36, 1997, pp. 8377-8383. doi:10.1021/bi970209y

[93]   L. Zhang, L. Song and E. M. Parker, “Calpain Inhibitor I Increases B-Amyloid Peptide Production by Inhibiting the Degradation of the Substrate of -Secretase,” Journal of Biological Chemistry, Vol. 274, No. 13, 1999, pp. 8966-8972. doi:10.1074/jbc.274.13.8966

[94]   C. Haass, M. G. Schlossmacher, A. Y. Hung, C. Vigo- Pelfrey, A. Mellon, B. L. Ostaszewski, I. Lieberburg, E. H. Koo, D. Schenk and D. B. Teplow, “Amyloid B-Peptide Is Produced by Cultured Cells During Normal Metabolism,” Nature, Vol. 359, 1992, pp. 322-325. doi:10.1038/359322a0

[95]   G. Verdile, R. N. Martins, M. Duthie, E. Holmes, P. H. St George-Hyslop and P. E. Fraser, “Inhbiting Amyloid Precursor Protein C-Terminal Cleavage Promotes an Interaction with Presenilin 1,” Journal of Biological Chemistry, Vol. 275, No. 27, 2000, pp. 20794-20798. doi:10.1074/jbc.C000208200

[96]   G. L. Caporaso, S. E. Gandy, J. D. Buxbaum, T. V. Ramabhadran and P. Greengard, Protein Phosphorylation Regulates Secretion of Alzheimer Beta/A4 Amyloid Precursor Protein,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, 1992, pp. 3055-3059. doi:10.1073/pnas.89.7.3055

[97]   H. Steiner, A. Capell, B. Pesold, M. Citron, P. M. Kloetzel, D. J. Selkoe, H. Romig, K. Mendla and C. Haass, “Expression of Alzheimer’s Disease-Associated Presenilin-1 Is Controlled by Proteolytic Degradation and Complex Formation,” Journal of Biological Chemistry, Vol. 273, No. 48, 1998, pp. 32322-32331. doi:10.1074/jbc.273.48.32322

[98]   L. L. Zhang, L. X. Song and E. M. Parker, “Calpain Inhibitor I Increases Beta-Amyloid Peptide Production by Inhibiting the Degradation of the Substrate of Gamma- Secretase. Evidence That Substrate Availability Limits Beta-Amyloid Peptide Production,” Journal of Biological Chemistry, Vol. 274, No. 13, 1999, pp. 8966-8972. doi:10.1074/jbc.274.13.8966

[99]   G. Verdile, R. N. Martins, M. Duthie, E. Holmes, P. H. St George-Hyslop and P. E. Fraser, “Inhibiting Amyloid Precursor Protein C-Terminal Cleavage Promotes an Interaction with Presenilin 1,” Journal of Biological Chemistry, Vol. 274, No. 25, 2000, pp. 20794-20798. doi:10.1074/jbc.C000208200

[100]   J. F. Disterhoft, W. E. Gispen, J. Traber and Z. S. Khachaturian (Eds.), “Calcium Hypothesis of Aging and Dementia,” Annals of the New York Academy of Sciences, 1994, p. 747.

[101]   M. Chen, “Is Alzheimer’s Disease Associated with a Decreased Intracellular Level of Calcium?” Frontiers in Bioscience, Vol. 3, 1998, Let 1-2.

[102]   C. L. Wellington and M. R. Hayden, “Caspases and Neurodegeneration, on the Cutting Edge of New Therapeutic Approaches,” Clinical Genetics, Vol. 57, No. 1, 2000, pp. 1-10. doi:10.1034/j.1399-0004.2000.570101.x

[103]   P. Marambaud, C. Alves Da Costa, K. Ancolio and F. Checler, “Alzheimer’s Disease-Linked Mutation of Presenilin 2 (N141 I-PS2) Drastically Lowers Appalpha Secretion, Control by Proteasome,” Biochemical and Biophysical Research Communications, Vol. 252, No. 1, 1998, pp. 134-138. doi:10.1006/bbrc.1998.9619

[104]   SS. Petanceska, V. Nagy, D. Frail and S. Gandy, “Ovariectomy and 17beta-Estradiol Modulate the Levels of Alzheimer’s Amyloid Beta Peptides in Brain,” Neurology, Vol. 54, No. 12, 2000, pp. 2212-2217.

[105]   M. X. Tang, D. Jacobs, Y. Stern, K. Marder, P. Schofield, B. Gurland, H. Andrews and R. Mayeux, “Effect of Oestrogen During Menopause on Risk and Age at Onset of Alzheimer’s Disease,” Lancet, Vol. 348, No. 9025, 1996, pp. 429-432. doi:10.1016/S0140-6736(96)03356-9

[106]   L. Melton, “Sex Is All in the Brain, Report of a Novartis Foundation Symposium on the Neural and Cognitive Effects of Oestrogens,” Trends Endocrinol Metabolism, Vol. 11, 2000, pp. 69-71. doi:10.1016/S1043-2760(99)00231-3

[107]   V. W. Henderson, A. Paganini-Hill, B. L. Miller, R. J. Elble, P. F. Reyes, D. Shoupe, C. A. Mccleary, R. A. Klein, A. M. Hake and M. R. Farlow, “Estrogen for Alzheimer’s Disease in Women, Randomised Double-Blind, Placebo-Controlled Trial,” Neurology, Vol. 54, 2000, pp. 295-301.

[108]   R. A. Mulnard, C.W. Cotman, C. Kawas, R. J. Elble, P. F. Reyes, D. Shoupe, C.A. McCleary, R. A. Klein, A. M. Hake and M. R. Farlow, “Estrogen Replacement Therapy for Treatment of Mild to Moderate Alzheimer’s Disease, A Randomised Control Trial, Alzheimer’s Disease Corporative Study,” Journal of the American Medical Association, Vol. 283, No. 8, 2000, pp. 1007-1015. doi:10.1001/jama.283.8.1007

[109]   J. Shi, K. S. Panickar, S. H. Yang, O. Rabbani, A. L. Day and J. W. Simpkins, “Estrogen Attenuates Over-Expression of Beta-Amyloid Precursor Protein Messenger RNA in an Animal Model of Focal Ischemia,” Brain Research, Vol. 810, No. 1-2, 1998, pp. 87-92. doi:10.1016/S0006-8993(98)00888-9

[110]   P. I. Ho, S. C. Collins, S. Dhitavat, D. Ortiz, D. Ashline, E. Rogers and T. B. Shea, “Homocysteine Potentiates B-Amyloid Neurotoxicity, Role of Oxidative Stress,” Journal of Neurochemistry, Vol. 78, 2001, pp. 249-253. doi:10.1046/j.1471-4159.2001.00384.x

[111]   S. Sawada, S. Takada and C. Yamamoto, “Excitatory Actions of Homocysteic Acid on Hippocampal Neurons,” Brain Research, Vol. 238, No. 1, 1982, pp. 282-285. doi:10.1016/0006-8993(82)90798-3

[112]   M. Lee, H. K. Strahlendorf and J. C. Strahlendorf, “Differential Effects of N-Methyl-D-Aspartic Acid and L- Homocysteine Acid on Cerebellar Purkinje Neurons,” Brain Research, Vol. 456, No. 1, 1988, pp. 104-112. doi:10.1016/0006-8993(88)90351-4

[113]   S. A. Lipton, W. K. Kin, Y. B. Choi, S. Kumar, D. M. D-Emilia, P. V. Rayudu, D. R. Amelle and J. S. Stamler, “Neurotoxicity Associated with Dual Actions of Homocysteine at the N-Methyl-D-Aspartate Receptor,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, 1997, pp. 5923-5928. doi:10.1073/pnas.94.11.5923

[114]   I. I. Kruman, C. Culmsee, S. L. Chan, Y. Kruman Y, Z. Guo, L. Penix and M. P. Mattson, “Homocysteine Elicits a DNA Damage Response in Neurons that Promotes Apoptosis and Hypersensitivity to Excitotoxicity,” Journal of Neuroscience, Vol. 20, No. 18, 2000, pp. 6920- 6926.

[115]   R. Clarke, A. D. Smith, K. A. Jobst, H. Retsum, I. Sutton and P. M. Ueland, “Folate, Vitamin B12, and Serum Total Homocysteine Levels in Confirmed Alzheimer’s Disease,” Archives of Neurology, Vol. 55, No. 11, 1998, pp. 1449-1455. doi:10.1001/archneur.55.11.1449

[116]   C. G. Gottfries, W. Lehmann and B. Reglan, “Early Diagnosis of Cognitive Impairment in the Elderly with the Focus on Alzheimer’s Disease,” Journal of Neural Transmission, Vol. 105, 1998, pp. 773-783. doi:10.1007/s007020050094

[117]   J. Miller, “Homocysteine and Alzheimer’s Disease,” Nutrition Reviews, Vol. 57, 1999, pp. 126-129.

[118]   P. I. Ho, S. C. Collins, S. Dhitavat, D. Ortiz, D. Ashline, E. Rogers and T. B. Shea, “Homocysteine Potentiates Beta-Amyloid Neurotoxicity, Role of Oxidative Stress,” Journal of Neurochemistry, Vol. 78, 2001, pp. 249-253. doi:10.1046/j.1471-4159.2001.00384.x

[119]   M. L. Zeise, T. Knopfel and W. Zieglgansberger, “(+1-)- Beta-Parachlorophenylglutamate Selectivity Enhances the Depolarizing Response to L-Homocysteine Acid in Neocortical Neurons of the Rat Evidence for a Specific Uptake System,” Brain Research, Vol. 359, No. 6393, 1988, pp. 325- 327.

[120]   M. P. Mattson, B. Cheng, D. Davis, K. Bryant, I. Leiberburg and R. E. Rydel, “Beta Amyloid Peptides Destabilized Calcium Homeostasis and Render Human Cortical Neurons Vulnerable to Excitotoxicity,” Journal of Neuroscience, Vol. 12, No. 2, 1992, pp. 376-389.

[121]   C. W. Gray and A. J. Patel, “Neurodegeneration Mediated By Glutamate and Beta-Amyloid Peptide a Comparison and Possible Interaction,” Brain Research, Vol. 691, No. 1, 1995, pp. 169-179. doi:10.1016/0006-8993(95)00669-H

[122]   J. I. Morgan and T. Curran, “Stimulus-Transcription Coupling and Nervous System, Involvement of the Inducible Protooncogenes Fos and Jun,” Annual Reviews in Neuroscience, Vol. 14, 1991, pp. 421-451. doi:10.1146/annurev.ne.14.030191.002225

[123]   M. Sheng and M. E. Greenburg, “The Regulation and Function of c-Fos and Other Immediate Early Genes in the Nervous System,” Neuron, Vol. 4, 1990, pp. 477-485. doi:10.1016/0896-6273(90)90106-P

[124]   H. Bading, D. D. Ginty and M. E. Greenberg, “Regulation of Gene Expression in Hippocampal Neurones by Distinct Signalling Pathways,” Science, Vol. 260, No. 5105, 1993, pp. 181-186. doi:10.1126/science.8097060

[125]   M. Dragunow, W. C. Abraham, M. Goulding, S. E. Mason, H. A. Robertson and R. L. M. Faull, “Long Term Potentiation and the Induction of c-Fos mRNA Proteins in the Dentate Gyrus of Unanaesthetized Rats,” Neuroscience Letters, Vol. 101, No. 3, 1989, pp. 274-280. doi:10.1016/0304-3940(89)90545-4

[126]   D. E. Herrera and H. A. Robertson, “Unilateral Induction of c-Fos Protein in Cortex Following Cortical Devascularization,” Brain Research, Vol. 503, No. 2, 1989, pp. 205-213. doi:10.1016/0006-8993(89)91665-X

[127]   A. M. Szekely, M. I. Barbaccia and E. Costa, “Activation of Specific Glutamate Receptor Subtypes Increases c-Fos Proto-Oncogene Expression in Primary Cultures of Neonatal Rat Cerebellar Granule Cells,” Neuropharmacology, Vol. 26, 1987, pp. 1779-1782. doi:10.1016/0028-3908(87)90132-8

[128]   A. M. Szekely, M. I. Barbaccia, H. Alho and E. Costa, “In Primary Cultures of Cerebellar Granule Cells the Activation of NMDA-Sensitive Glutamate Receptors Induces c-Fos mRNA Expression,” Molecular Pharmacology, Vol. 35, 1989, pp. 401-408.

[129]   L. M. Refolo, C. Eckman, C. M. Prada, D. Yager, K. Sambamurti, N. Mehta, J. Hardy and S. G. Younkin,” Antisense-Induced Reduction of Presenilin 1 Expression Selectively Increases the Production of Amyloid Beta 42 in Transfected Cells,” Journal of Neurochemistry, Vol. 73, No. 6, 1999, pp. 2383-2388. doi:10.1046/j.1471-4159.1999.0732383.x

[130]   V. B. Kumar, S. A. Farr, J. F. Flood, V. Kemalsh, M. Franko, W. Banks and J. Morley. Site-Directed Antisense Oligonucleotide Decreases the Expression of Amyloid Precursor Protein and Reverses Deficits in Learning and Memory in Aged SAMP8 Mice,” Peptides, Vol. 21, No. 12, 2000, pp. 1769-1775. doi:10.1016/S0196-9781(00)00339-9

[131]   T. Mizuno, C. Haas, M. Michikawa and K. Yanagisawa, “Cholesterol-Dependent Generation of a Unique Amyloid Beta-Protein from Apically Missorted Amyloid Precursor Protein in MDCK Cells,” Biochemistry and Biophysical ACTA, Vol. 1373, No. 1, 1998, pp. 119-130. doi:10.1016/S0005-2736(98)00097-2

[132]   B. Wolozin, W. Kellman, P. Rousseau, G. G. Celesia and G. Siegel, “Decrease Prevalence of Alzheimer’s Disease Associated with 3-Hydroxy-3-Methylglutaryl Coenzyme a Reductase Inhibitors,” Archives of Neurology, Vol. 57, No. 10, 2000, pp. 1439-1443. doi:10.1001/archneur.57.10.1439

 
 
Top