[1] Bhowmik, P.C. and Inderfit, M. (2003) Challenges and Opportunities in Implementing Allelepathy for Natural Weed Management. Crop Protection, 22, 661-671.
https://doi.org/10.1016/S0261-2194(02)00242-9
[2] Fomsgaard, I.S. (2006) Chemical Ecology in Wheat Plant-Pest Interaction. How the Use of Modern Techniques and Multidisciplinary Approach can throw a New Light on a Well-Known Phenomenon: Allelopathy. Journal Agricultural and Food Chemistry, 54, 987-990.
https://doi.org/10.1021/jf051146q
[3] Swranton, C.J. and Murphy, S.D. (1996) The Role of Integrated Weed Management (IWM) in Agroecosystem Health. Weed Science, 44, 437-387.
[4] Chou, C.H. and Patrick, Z.A. (1976) Identification and Phytotoxicity Activity of Compounds Produced during Decomposition of Corn and Rye Residues in Soil. Journal Chemical Ecology, 2, 369-387.
https://doi.org/10.1007/BF00988283
[5] Blum, U., Gering, T.M., Worsham, A.D., Holappa, L.D. and King, L.D. (1992) Allelopathic Activity in Wheat-Conventional and Wheat-No-Till Soils: Development of Soil Extract Bioassays. Journal Chemical Ecology, 18, 2191-2221.
https://doi.org/10.1007/BF00984946
[6] Macias, F.A., Marin, D., Oliveros-Bastidas, A. Castellano, D. Simonet, A.M. and Molinillo, M.G. (2005) Degradation Studies on Benzoxazinoids. Soil Degradation Dynamics of (2R)-2-O-ß-D-Glucopiranosyl-4-hydroxy-(2H)-1,4-Benzoxazin-3(4H)-one (DIBOA-Glc) and Its Degradation Products, Phytotoxic Allelochemicals from Gramineae. Journal Agricultural and Food Chemistry, 53, 554-561.
https://doi.org/10.1021/jf048702l
[7] Sicker, D., Frey, M., Schulz, M. and Gierl, A. (2000) Role of Natural Benzoxaxolinones in Survival Strategy of Plants. In: Jeong, K.W., Ed., International Review of Citology. A Survey of Cell Biology, Academic Press, San Diego, 319-346.
https://doi.org/10.1016/S0074-7696(00)98008-2
[8] Copaja, S.V., Villarroel, E., Bravo, H.R., Pizarro, L. and Argandoña, V.H. (2006) Hydroxamic Acids in Secale cereale L. and Relationship with Their Antifeedant and Allelopathic Properties. Zeitschrift für Naturforschung, 61c, 670-676.
https://doi.org/10.1515/znc-2006-9-1010
[9] Wu, H., Haig, T., Pratley, J. Lemerle, D. and An, M. (2001) Allelochemicals in Wheat (Triticum aestivum L.) Production and Exudation of 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One. Journal Chemical Ecology, 27, 1691-1700.
https://doi.org/10.1023/A:1010422727899
[10] Macias, F.A., Marin, D., Oliveros-Bastidas, A., Castellano, D., Simonet, A.M. and Molinillo, J.M.G. (2005) Structute-Activity Relationships (SAR) Studies of Benzoxazolinones, Their Degradation Products and Analogues. Phytotoxicity on Target Species (STS). Journal Agricultural and Food Chemistry, 53, 538-548.
https://doi.org/10.1021/jf0484071
[11] Bravo, H.R., Iglesias, M.J., Copaja, S.V. and Argandoña, V.H. (2010) Phytotoxicity of Inodle Alkaloids from Cereals. Revista Latinoamericana de Química, 38, 123-129.
[12] Ahn, J.K. and Chung, I.M. (2000) Allelopathic Potential of Rice Hulls on Germination and Seedling Growth of Barnyard Grass. Agronomy Journal, 92, 162-1167.
https://doi.org/10.2134/agronj2000.9261162x
[13] Baghestani, A., Limieux, C., Baziramakeng, R. and Simarda, R.R. (1999) Determination of Allelochemicals in Spring Cultivars Cereal of Different Competitiveness. Weed Science, 47, 498-504.
[14] Ishikawa, Y. and Kanke, T. (2000) Role of Gramine in the Feeding Deterrence of Barley against the Migratory Locust, Locusta migratoria (Orthoptera: Acrididae). Applied Entomology and Zoology, 35, 251-256.
https://doi.org/10.1303/aez.2000.251
[15] Pastuszewska, B., Smulikowska, S., Wasilewko, J., Buraczewska, L., Ochtabinska, A., Mieczkoswska, A., Lechawsk, L. and Bielecki, W. (2001) Response of Animals to Dietary Gramine. I. Performance and Selected Hematological, Biochemical and Histological Parameters in Growing Chicken, Rats and Pigs. International Bibliographic Information Dietary Supplements, 55, 1-16.
[16] Overland, L. (1966) The Role of Allelopathic Substances in the “Smother Crop” Barley. American Journal of Botany, 53, 423-432.
https://doi.org/10.1002/j.1537-2197.1966.tb07355.x
[17] Hagin, R.D. (1989) Isolation and Identification of 5-Hydroxy Indole-3-Acetic Acid and 5-Hydroxy-Triptophan, Mayor Allelopathic Aglucons in Quackgrass (Agropyron repens L. Beauv). Journal Agricultural and Food Chemistry, 37, 1143-1149.
https://doi.org/10.1021/jf00088a072
[18] Wieland, I., Friebe, A., Kluge, M., Sicker, D. and Schulz, M. (1999) Detoxification of Benzoxazolinones in Higher Plants. In: Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G. and Cutler, H.G., Eds., Recent Advances in Allelopathy. A Science for the Future, Vol. 1 Servicio Publicaciones, Universidad de Cádiz, Spain, 47-58.
[19] Sicker, D., Hao, H. and Schulz, M. (2004) Benzoxazolin-2-(3H)-Ones. Germination, Effects and Detoxification in the Competition among Plants. In: Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G. and Cutler, H.G., Eds., Allelopathy-Chemistry and Role of Action of Allelochemical, C.S.R. Press Boca Raton, London, 77-102.
[20] Rioboo, C., González, D., Herrero, C. and Cid, A. (2002) Physiological Response of Fresh Water Microalga (Chlorella vulgaris) to Triazinne and Phenyl-Urea Herbicides. Aquatic Toxicology, 59, 225-235.
https://doi.org/10.1016/S0166-445X(01)00255-7
[21] Bravo, H.R., Copaja, S.V. and Lamborot, M. (2013) Phytoxicity of Phenolic Acids from Cereals. In: Price, A. and Kelton, J., Eds., Herbicides Advances in Research, Book 2, Intech, Rijeka, 37-49.
[22] Yang, C., Yu, Y., Sun, W. and Xia, C. (2014) Indole Derivatives Inhibited the Formation of Bacterial Biofilm and Modulated Ca2+ Efflux in Diatom. Marine Pollution Bulletin, 88, 62-69.
https://doi.org/10.1016/j.marpolbul.2014.09.027
[23] Matsuo, H., Taniguchi, K., Hiramoto, T., Yamada, T., Ichinose, Y., Toyoda, K., Takeda, K. and Shiraishi, T. (2001) Gramine Increase Associated with Rapid and Transient Systemic Resistance in Barley Seedling by Mechanical and Biology Stresses. Plant Cell Physiology, 42, 1103-1111.
https://doi.org/10.1093/pcp/pce139
[24] Argandoña, V.H., Zùñiga, G.E. and Corcuera, L.J. (1987) Distribution of Gramine and Hydroxamic Acids in Barley and Wheat Leaves. Phytochemistry, 26, 1917-1918.
[25] Hanson, A.D., Traynor, P.L., Dittz, K.M. and Reicosky, D.A. (1981) Gramine Forage-Effects of Genotypes and Environment. Crop Science, 21, 726-730.
https://doi.org/10.2135/cropsci1981.0011183X002100050024x
[26] Bravo, H.R., Weiss-López, B.E., Valdebenito-Gamboa, J. and Gómez-Jeria, S. (2016) A Theoretical Analysis of the Relationships between the Electronic Structure of Indole Derivatives and Their Phytotoxicity against Lactuca sativa Seeds. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7, 792-798.
[27] Bravo, H.R., Copaja, S.V. and Lazo, W. (1997) Antimicrobial Activity of Natural 2-Benzoxazolinones and Related Derivatives. Journal Agricultural and Food Chemistry, 45, 3255-3257.
https://doi.org/10.1021/jf9608581
[28] Bravo, H.R., Weiss-López, B.E., Lamborot, M. and Copaja, S.V. (2003) Chemical Basis for the Antimicrobial Activity of Acetanilide. Journal Chilean Chemical Society, 48, 27-30.
https://doi.org/10.4067/S0717-97072003000400005
[29] Bravo, H.R., Villarroel, E., Copaja S.V. and Argandoña, V.H. (2008) Chemical Basis for the Phytotoxicity of N-Aryl Hydroxamic Acids and Acetanilide Analogues. Zeitschrift für Naturforschung, 63c, 389-394.
https://doi.org/10.1515/znc-2008-5-613
[30] Johnson, C.D. (1973) The Hammett Equation. Cambridge University Press, Cambridge, 1-67.
[31] Hansch, C., Muir, R.M., Fujita, T., Maloney, P.P., Geiger, F. and Streich, M. (1963) The Correlation of Biological Activity of Plant Growth Regulators and Chloromycetin Derivatives with Hammett Constants and Partition Coefficients. Journal Chemical Society, 85, 2817-2824.
https://doi.org/10.1021/ja00901a033
[32] Leo, A.C. and Elkins, D. (1971) Partition Coefficients and Their Uses. Chemical Review, 71, 525-616.
https://doi.org/10.1021/cr60274a001
[33] Finizzio, A., Vighi, M. and Sandroni, D. (1977) Determination of Octanol/Water Partition Coefficient (Kow) of Pesticides: Critical Review and Comparison of Methods. Chemosphere, 34, 131-161.
https://doi.org/10.1016/S0045-6535(96)00355-4
[34] Nahum, A. and Horwath, C. (1980) Evaluation of Octanol-Water Partition Coefficients by Using High Performance Liquid Chromatography. Journal of Chromatography, 192, 315-322.
https://doi.org/10.1016/S0021-9673(80)80006-9
[35] Unger, S.H. and Chiang, G.H. (1981) Octanol Physiological Buffer Distribution Coefficients of Lipophilic Amines by Reverse Phase High-Performance Liquid Chromatography and Their Correlation with Biological Activity. Journal of Medicinal Chemistry, 24, 262-270.
https://doi.org/10.1021/jm00135a006
[36] Hollosy, F., Lorand, T., Orfi, L., Eros, D., Keri, G. and Idei, M. (2002) Relationship between Lipophilicity and Antitumor Activity of Molecule Library of Mannich Ketones Determined by High-Performance Liquid Chromatography, Clog Calculation and Cytotoxicity Test. Journal of Chromatography, 768, 361-368.
[37] Baker, J.K., Rauls, D.D. and Borne, R.F. (1979) Correlation of Biological Activity and High-Performance Liquid Chromatography Retention Index for a Series of Propanol Barbiturate and Anthralinic Acid Analogues. Journal of Medicinal Chemistry, 22, 1301-1306.
https://doi.org/10.1021/jm00197a005