Back
 MSA  Vol.9 No.12 , November 2018
Investigation of Thermodynamic Properties of Zirconia Thin Films by Statistical Moment Method
Abstract: The moment method in statistical (SMM) dynamics is used to study the thermodynamic quantities of ZrO2 thin films taking into account the anharmonicity effects of the lattice vibrations. The average lattice constant, thermal expansion coefficient and specific heats at the constant volume of ZrO2 thin films are calculated as a function of temperature, pressure and thickness of thin film. SMM calculations are performed using the Buckingham potential for the ZrO2 thin films. In the present study, the influence of temperature, pressure and the size on the thermodynamic quantities of ZrO2 thin film have been studied using three different interatomic potentials. We discuss temperature and thickness dependences of some thermodynamic quantities of ZrO2 thin films and we compare our calculated results with those of the experimental results.
Cite this paper: Hung, V. , Huong, L. and Hai, D. (2018) Investigation of Thermodynamic Properties of Zirconia Thin Films by Statistical Moment Method. Materials Sciences and Applications, 9, 949-964. doi: 10.4236/msa.2018.912068.
References

[1]   Farah, A.J., et al. (2009) Structural and Morphological Evolution of Cerium Oxide Thin Film on Silicon Prepared by Metal-Organic Decomposition Route. Journal of nuclear and Related Technologies, 6, 183-189.

[2]   Rao K.N., Shivlingappa L. and Mohan S. (2003) Studies on Single Layer CeO2 and SiO2 Films Deposited by Rotating Crucible Electron Beam Evaporation. Materials Science and Engineering: B, 98, 38-44.

[3]   Gerblinger, J., Lohwasser, W., Lampe, U. and Meixner, H. (1995) High Temperature Oxygen Sensor Based on Sputtered Cerium Oxide. Sensors and Actuators B: Chemical, 26, 93-96.
https://doi.org/10.1016/0925-4005(94)01564-X

[4]   Oh, S., Yoo, J., Lee, K., Kim, J.H. and Youm, D. (1998) Comparative Study on the Crack Formations in the CeO Buffer 2 Layers for YBCO Films on Textured Ni Tapes and Pt Tapes. Physica C: Superconductivity, 308, 91-98.
https://doi.org/10.1016/S0921-4534(98)00412-2

[5]   Kim, C.J., Kim, H.J., Sun, J.W., Ji, B.K., Kim, H.S., Joo, J., Jun, B.H., Jung, C.H., Park, S.D., Park, H.W. and Hong, G.W. (2003) Deposition of CeO2 and NiO Buffer Layers for YBCO Coated Conductors on Biaxially Textured Ni Substrates by a MOCVD Technique. Physica C: Superconductivity, 386, 327-332.
https://doi.org/10.1016/S0921-4534(02)02151-2

[6]   Graboy, I.E., Markov, N.V., Maleev, V.V., Kaul, A.R., Polyakov, S.N., Svetchnikov, L., Zandbergen, H.W. and Damhmen, K.H. (1997) An Improvement of Surface Smoothness and Lattice Match of CeO2 Buffer Layers on R-Sapphire Processed by MOCVD. Journal of Alloys and Compounds, 251, 318-321.
https://doi.org/10.1016/S0925-8388(96)02700-4

[7]   Horita, T., Sakai, N., Yokokawa, H., Dokiya, M., Kawada, T., Poulsen, F.W., et al. (1996) Electrochemical Reaction on Ceria Coated Zirconia in H2-H2O Atmosphere. Proceedings of the 17th RISO International Symposium on Materials Science: High Temperature Electrochemistry: Ceramics and Metals, Roskilde, 2-6 September 1996, 281-286.

[8]   Frohlich, K., Souc, J., Rosova, A., Machajdik, D., Graboy, I.E., Svetchnikov, V.L., Figueras, A. and Weiss, F. (1997) Superconducting Films Prepared by Aerosol Metal Organic Chemical Vapour Deposition on Substrate with Buffer Layer. Superconductor Science and Technology, 10, 657-662.
https://doi.org/10.1088/0953-2048/10/9/005

[9]   Takahashi, N., Koukitu, A. and Seki, H. (2001) Growth and Characterization of YBa2Cu3Ox and NdBa2Cu3Ox Superconducting Thin Films by Mist Microwave-Plasma Chemical Vapor Deposition Using a CeO2 Buffer Layer. Journal of Materials Science, 35, 1231-1238.

[10]   Paivasaari, J., Putkonen, M. and Niinisto, L. (2002) Cerium Dioxide Buffer Layers at Low Temperature by Atomic Layer Deposition. Journal of Materials Chemistry, 12, 1828-1832.
https://doi.org/10.1039/b108333c

[11]   Elidrissi, B., Addou, M., Regragui, M., Monty, C., Bougrine, A. and Kachouane, A. (2000) Structural and Optical Properties of CeO2 Thin Films Prepared by Spray Pyrolysis. Thin Solid Films, 379, 23-27.
https://doi.org/10.1016/S0040-6090(00)01404-8

[12]   Onn, T.M., Mao, X., Lin, C., Wang, C. and Gorte, R.J. (2017) Inves-tigation of the Thermodynamic Properties of Surface Ceria and Ceria-Zirconia Solid Solution Films Prepared by Atomic Layer Deposition on Al2O3. Inorganics, 5, 69-80.
https://doi.org/10.3390/inorganics5040069

[13]   Hojabri, A. (2016) Structural and Optical Characterization of ZrO2 Thin Films Grown on Silicon and Quartz Substrates. Journal of Theoretical and Applied Physics, 10, 219-224.
https://doi.org/10.1007/s40094-016-0218-8

[14]   Sunke, V. and Suda, U. (2018) Structural and Optical Properties of Thermally Oxidized Zirconium Dioxide Films. International Letters of Chemistry, Physics and Astronomy, 77, 15-25.

[15]   Hung, V.V., Thanh, L.T.M. and Masuda-Jindo, K. (2010) Study of Thermodynamic Properties of Cerium Dioxide under High Pressures. Computational Materials Science, 49, 355-358.
https://doi.org/10.1016/j.commatsci.2010.03.003

[16]   Hung, V.V. and Thanh, L.T.M. (2011) Study of Elastic Properties of CeO2 by Statistical Moment Method. Physica B, 406, 4014-4018.
https://doi.org/10.1016/j.physb.2011.07.012

[17]   Hung, V.V., Lee, J. and Masuda-Jindo, K. (2006) Investigation of Thermodynamic Properties of Cerium Dioxide by Statistical Moment Method. Journal of Physics and Chemistry of Solids, 67, 682-689.
https://doi.org/10.1016/j.jpcs.2005.09.100

[18]   Hung, V.V., Hang, N.T. and Huong, L.T.T. (2012) Lattice Constant of Ceria Thin Film: Temperature Dependence. 57, 79.

[19]   Hung, V.V., Thanh, L.T.M. and Hai, N.T. (2006) Investigation of Thermodynamic Quantities of the Cubic Zirconia by Statistical Moment Method. Advances in Natural Sciences, 7, 21.

[20]   Tang, N. and Hung, V.V. (1988) Investigation of the Thermodynamic Properties of Anharmonic Crystals by the Momentum Method. Physica Status Solidi (B), 149, 511-519.
https://doi.org/10.1002/pssb.2221490212

[21]   Houska, J. (2016) Force Field for Realistic Molecular Dynamics Simulations of ZrO2 Growth. Computational Materials Science, 111, 209.
https://doi.org/10.1016/j.commatsci.2015.09.025

[22]   Zacate, M.O., Minervini, L., Bradfield, D.J., Grimes, R.W. and Sickafus, K.E. (2000) Defect Cluster Formation in M2O3-Doped Cubic ZrO2. Solid State Ionics, 128, 245-254.
https://doi.org/10.1016/S0167-2738(99)00348-3

[23]   Jansen, H.I.F. (1991) Electronic Structure of Cubic and Tetragonal Zirconia. Physical Review B, 43, 7267-7278.
https://doi.org/10.1103/PhysRevB.43.7267

[24]   Walter, E.J., et al. (2001) First Principle Study of Carbon Monoxide Adsortion on Zirconia-Supported Copper. Surface Science, 495, 44-50.
https://doi.org/10.1016/S0039-6028(01)01498-4

[25]   Stefanovich, E.V., Shluger, A.L. and Catlow, C.R.A. (1994) Theoretical Study of the Stabilization of Cubic-Phase ZrO2 by Impurities. Physical Review B, 49, 11560-11571.
https://doi.org/10.1103/PhysRevB.49.11560

[26]   Aldebert, P. and Traverse, J.-P. (1985) Structure and Ionic Mobility of Zirconia at High Temperature. Journal of the American Ceramic Society, 68, 34-40.
https://doi.org/10.1111/j.1151-2916.1985.tb15247.x

[27]   Fu, Q., Saltsburg, H. and Flytzani-Stephanopoulos, M. (2003) Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science, 301, 935-938.
https://doi.org/10.1126/science.1085721

[28]   Brinkman, H.W., Briels, W.J. and Verweij, H. (1995) Molecular Dynamics Simulation of Yttria-Stabilized Zirconia. Chemical Physics Letters, 247, 386-390.
https://doi.org/10.1016/S0009-2614(95)01231-1

[29]   Okur, A., Yigit, R., Celik, E. and Sayman, O. (2011) Thermal Stress Analysis in ZrO2 Insulation Coatings on Cr-Ni Substrates during Cooling Process. Mathematical and Computational Applications, 16, 598-604.
https://doi.org/10.3390/mca16030598

 
 
Top