Back
 GEP  Vol.6 No.11 , November 2018
Modelling and Inversion of Ground Magnetic and Electromagnetic Data for Delineation of Subsurface Structures at Siloam Hot Spring in the Soutpansberg Basin
Abstract: Geophysical surveys utilising magnetic and electromagnetic techniques were carried out at the Siloam hot spring. The spring is in the Soutpansberg Basin in the northern part of South Africa. The research was to investigate groundwater bearing structures at the hot spring. Magnetic survey results showed that the spring occurs between two north dipping dykes. The two dykes could be faulted segments of a single dyke or sill. Magnetic susceptibility results highlighted the presence of metamorphic and volcanic rocks. Electromagnetic survey results showed that the hot spring was within a roughly east to west trending, zone with high electrical conductivity values. Based on the survey results, water is exploiting fractures in the dyke or sill.
Cite this paper: Nyabeze, P. and Gwavava, O. (2018) Modelling and Inversion of Ground Magnetic and Electromagnetic Data for Delineation of Subsurface Structures at Siloam Hot Spring in the Soutpansberg Basin. Journal of Geoscience and Environment Protection, 6, 109-123. doi: 10.4236/gep.2018.611009.
References

[1]   Barker, O. B., Brandl, G., Callaghan, C. C., Eriksson, P. G., & van Der Neut, M. (2006). The Soutpansberg and Waterberg Groups and the Blouberg Formation. In M. R. Johnson, M. R. Anhaeusser, & C. R. Thomas (Eds.), The Geology of South Africa (pp 301-318). Pretoria: Council for Geoscience; Johannesburg: Geological Society of South Africa.

[2]   Brandl, G., Mitchev, S. A., Stettler, E. H., Graham, G., & Smit, J. P. (2001). Liquefaction-Induced Features along the Siloam Fault, Soutpansberg: Seismic Origin or Ground Water Phenomenon? 7th SAGA Biennial Technical Meeting and Exhibition, 2001, 20.

[3]   Buschow, K. H. J., & de Boer, F. R. (2003). Physics of Magnetism and Magnetic Materials (vol. 92, p. 182). New York: Kluwer Academic/Plenum Publishers.
https://doi.org/10.1007/b100503

[4]   Cano, M. E., Cordova-Fraga, T., Sosa, M., Bernal-Alvarado, J., & Baffa, O. (2008). Understanding the Magnetic Susceptibility Measurements by Using an Analytical Scale. European Journal of Physics, 29, 345. https://doi.org/10.1088/0143-0807/29/2/015

[5]   Clark, D. A., & Emerson, D. W. (1991). Notes on Rock Magnetization Characteristics in Applied Geophysical Studies. Exploration Geophysics, 22, 547-555.
https://doi.org/10.1071/EG991547

[6]   Collinson, D. (2013). Methods in Rock Magnetism and Palaeomagnetism: Techniques and Instrumentation (pp. 1-13). Berlin: Springer Science and Business Media.

[7]   Dalan, R. A. (2006). Magnetic Susceptibility. In: J. K. Johnson (Ed.), Remote Sensing in Archaeology (pp. 161-203). Tuscaloosa, AL: University of Alabama.

[8]   Dearing, J. (1994). Environmental Magnetic Susceptibility. Using the BartingtonMS2 System (p. 207). Kenilworth: Chi Publication.

[9]   Ellis, R. G., de Wet, B., & Macleod, I. N. (2012). Inversion of Magnetic Data for Remanent and Induced Sources. In Australian Society of Exploration Geophysicists (ASEG) Extended Abstracts 2012 22nd Conference (pp. 1-4). ASEG. https://doi.org/10.1071/ASEG2012ab117

[10]   Exploranium (1995). User’s Guide, KT-9 Kappmeter. Exploranium Radiation Detection Systems, 1, 76.

[11]   Ferguson, I. J., Young, J. B., Cook, B. J., Krakowka, A. B., & Tycholiz, C. (2016). Near-Surface Geophysical Surveys at the Duport Gold Deposit, Ontario, Canada: Relating Airborne Responses to Small-Scale Geologic Features. Interpretation, 4, SH39-SH60.
https://doi.org/10.1190/INT-2015-0216.1

[12]   Geometrics (2007). Geometrics G-856AX Memory magTM Proton Precession Magnetometer Operation Manual (P/N18101-02) (p. 60). San Jose, CA: Geometrics, Inc.

[13]   Geometrics (2011). Geometrics G-859AP MINING MAG Cesium Vapor Magnetometer Operation Manual (P/N 25272-OM.) (p. 111). San Jose, CA: Geometrics, Inc.

[14]   Geosoft (2013). VOXI Earth Modelling—Running an Inversion (p. 14). Toronto: Geosoft Oasis Montaj.

[15]   Geosoft (2014). Oasis Montaj Gridding (p. 21). Toronto: Geosoft Oasis Montaj.

[16]   Gunnink, J. L., Bosch, J. H. A., Siemon, B., Roth, B., & Auken, E. (2012). Combining Ground-Based and Airborne EM through Artificial Neural Networks for Modelling Glacial till under Saline Groundwater Conditions. Hydrology and Earth System Sciences, 16, 3062-3309.
https://doi.org/10.5194/hess-16-3061-2012

[17]   Kayode, J. S., Adelusi, A. O., & Nyabeze, P. K. (2011). Horizontal Derivatives of the Ground Magnetic Interpretation in Part of Ilesa Area, Southwestern Nigeria. Scientific Research and Essays, 6, 4163-4171.

[18]   Kayode, J. S., Adelusi, A. O., & Nyabeze, P. K. (2013). Bedrock Depth Estimates from Vertical Derivatives of the Ground Magnetic Studies around Ilesa Area, Southwestern Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences, 4, 594-603.

[19]   Lecoanet, H., Lévêque, F., & Segura, S. (1999). Magnetic Susceptibility in Environmental Applications: Comparison of Field Probes. Physics of the Earth and Planetary Interiors, 115, 191-204. https://doi.org/10.1016/S0031-9201(99)00066-7

[20]   Madi, K., Nyabeze, P. K., Gwavava, O., Sekiba, M., & Zhao, B. (2016). Magnetic and Electromagnetic Signatures around PolileTshisa Hot Spring in the Northern Neotectonic Belt in the Eastern Cape Province, South Africa. Acta Geophysica, 64, 943-962.
https://doi.org/10.1515/acgeo-2016-0001

[21]   McNeill, J. D. (1980). Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers. Technical Note TN-6 (p. 13). Ontario: Geonics.

[22]   McNeill, J. D. (1985). EM34-3 Measurements as Two Intercoil Spacings to Reduce Sensitivity to Near-Surface Material: Technical Note TN19 (p. 4). Ontario: Geonics Limited.

[23]   McNeill, J. D. (1985b). EM34-3 Survey Interpretation Techniques. Geonics Technical Note TN-4 (p. 17). Ontario: Geonics Limited.

[24]   Monteiro Santos, F. A. M. (2004). 1-D Laterally Constrained Inversion of EM34 Profiling Data. Journal of Applied Geophysics, 56, 123-134.
https://doi.org/10.1016/j.jappgeo.2004.04.005

[25]   Monteiro Santos, F. A., Almeida, E. P., Castro, R., Nolasco, R., & Mendes-Victor, L, (2002). A Hydrogeological Investigation Using EM34 and SP Surveys. Earth Planets Space, 54, 658.
https://doi.org/10.1186/BF03353053

[26]   Nutter, C. (1981). MAG2D: Interactive 2-1/2-Dimensional Magnetic Modeling Program, User’s Guide and Documentation. Salt Lake City, UT: Utah University, Research Institute.
https://doi.org/10.2172/5776383

[27]   Nyabeze, P. K., Venter, J. S., Olivier, J., & Motlakeng, T. R. (2010). Characterization of the Thermal Aquifer Associated with the Siloam Hot Spring in Limpopo, South Africa. In O. Totolo (Ed.) (2010), Water Resource Management—2010. Calgary: Acta Press.
http://dx.doi.org/10.2316/P.2010.686-059

[28]   Ojo, J. S., Olorunfemi, M. O., & Falebita, D. E. (2011). An Appraisal of the Geologic Structure Beneath the Ikogosi Warm Spring in South-Western Nigeria Using Integrated Surface Geophysical Methods. Earth Sciences Research Journal, 15, 27-34.

[29]   Olivier J., van Niekerk H. J., & van der Walt I. J. (2008). Physical and chemical Characteristics of Thermal Springs in the Waterberg Area in Limpopo Province, South Africa. Water SA, 34, 166-171.

[30]   Peters, L. J. (1949). The Direct Approach to Magnetic Interpretation and Its Practical Application. Geophysics, 14, 290-320. https://doi.org/10.1190/1.1437537

[31]   Ranganai, R. T., Moidaki, M., & King, J. G. (2015). Magnetic Susceptibility of Soils from Eastern Botswana: A Reconnaissance Survey and Potential Applications. Journal of Geography and Geology, 7, 45. https://doi.org/10.5539/jgg.v7n4p45

[32]   Spies, B. R. (1989). Depth of Investigation in Electromagnetic Sounding Methods. Geophysics, 54, 872-888. https://doi.org/10.1190/1.1442716

[33]   Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics (Vol. 1, p. 770). Cambridge, MA: Cambridge University Press.
https://doi.org/10.1017/CBO9781139167932

[34]   Zond (2010). ZondMag2D User Manual (p. 49). Saint-Petersburg: Zond Geophysical Software.

 
 
Top