Back
 JAMP  Vol.6 No.11 , November 2018
Kolmogorov Flow: Seven Decades of History
Abstract: The Kolmogorov flow (k-flow) is generated by a stationary sinusoidal force that varies in space. This flow is rather academic since generating such a periodic forcing in an unbounded flow is difficult to appear in nature. Nevertheless, it allows for simple experimental measurements and for a fairly detailed analytical treatment. Although simple, the k-flow makes a good test case for investigating simultaneously inhomogeneous, sheared, and anisotropic features in a flow, and several studies concerning the stability, transition, and turbulence of the k-flow have been published. The present article reviews the most important published works incorporating the k-flow as a test-bed for studying fluid mechanics, testing numerical or experimental methods, or even studying the properties of the k-flow itself.
Cite this paper: Fylladitakis, E. (2018) Kolmogorov Flow: Seven Decades of History. Journal of Applied Mathematics and Physics, 6, 2227-2263. doi: 10.4236/jamp.2018.611187.
References

[1]   Balmforth, N.J. and Young, Y.-N. (2002) Stratified Kolmogorov Flow. Journal of Fluid Mechanics, 450, 131-167.
https://doi.org/10.1017/S0022111002006371

[2]   Balmforth, N.J. and Young, Y.-N. (2005) Stratified Kolmogorov Flow. Part 2. Journal of Fluid Mechanics, 528, 23-42.
https://doi.org/10.1017/S002211200400271X

[3]   Young, Y.-N. and Balmforth, N. (2000) On Stratified Kolmogorov Flow. Stirring and Mixing: 1999 Program of Summer Study in Geophysical Fluid Dynamics, 97.

[4]   Obukhov, A. (1983) Kolmogorov Flow and Laboratory Simulation of It. Russian Mathematical Surveys, 38, 113-126.
https://doi.org/10.1070/RM1983v038n04ABEH004207

[5]   Meshalkin, L. and Sinai, I.G. (1961) Investigation of the Stability of a Stationary Solution of a System of Equations for the Plane Movement of an Incompressible Viscous Liquid. Journal of Applied Mathematics and Mechanics, 25, 1700-1705.
https://doi.org/10.1016/0021-8928(62)90149-1

[6]   Kolmogorov, A.N. (1941) The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Doklady Akademii Nauk SSSR, 299-303.

[7]   Carbone, V., Veltri, P. and Bruno, R. (1995) Experimental Evidence for Differences in the Extended Self-Similarity Scaling Laws between Fluid and Magnetohydrodynamic Turbulent Flows. Physical Review Letters, 75, 3110.
https://doi.org/10.1103/PhysRevLett.75.3110

[8]   Richardson, L.F. (1922) Forms Whereon to Write the Numerical Calculations Described in Weather Prediction by Numerical Process. Cambridge University Press, Cambridge.

[9]   Rollin, B., Dubief, Y. and Doering, C. (2011) Variations on Kolmogorov Flow: Turbulent Energy Dissipation and Mean Flow Profiles. Journal of Fluid Mechanics, 670, 204-213.
https://doi.org/10.1017/S0022112010006294

[10]   Doering, C.R. and Constantin, P. (1992) Energy Dissipation in Shear Driven Turbulence. Physical Review Letters, 69, 3000.
https://doi.org/10.1103/PhysRevLett.69.3000.2

[11]   Pope, S.B. (2000) Turbulent Flows. Cambridge University Press, Cambridge, 806.
https://doi.org/10.1017/CBO9780511840531

[12]   Weinan, E. and Shu, C.W. (1993) Effective Equations and the Inverse Cascade Theory for Kolmogorov Flows. Physics of Fluids A: Fluid Dynamics (1989-1993), 5, 998-1010.
https://doi.org/10.1063/1.858644

[13]   Kraichnan, R.H. (1959) The Structure of Isotropic Turbulence at Very High Reynolds Numbers. Journal of Fluid Mechanics, 5, 497-543.
https://doi.org/10.1017/S0022112059000362

[14]   Kraichnan, R.H. (1965) Inertial-Range Spectrum of Hydromagnetic Turbulence. Physics of Fluids (US), 8, 1385.
https://doi.org/10.1063/1.1761412

[15]   Kraichnan, R.H. (1976) Eddy Viscosity in Two and Three Dimensions. Journal of the Atmospheric Sciences, 33, 1521-1536.
https://doi.org/10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2

[16]   Ecke, R. (2005) The Turbulence Problem. An Experimentalist’s Perspective. Los Alamos Science, Los Alamos.

[17]   Hunt, J.C., Phillips, O.M. and Williams, D. (1991) Turbulence and Stochastic Processes: Kolmogorov’s Ideas 50 Years On. Royal Society, London.

[18]   Frisch, U. (1991) From Global Scaling, a la Kolmogorov, to Local Multifractal Scaling in Fully Developed Turbulence. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 434, 89-99.
https://doi.org/10.1098/rspa.1991.0082

[19]   Hunt, J. and Vassilicos, J. (1991) Kolmogorov’s Contributions to the Physical and Geometrical Understanding of Small-Scale Turbulence and Recent Developments. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 434, 183-210.
https://doi.org/10.1098/rspa.1991.0088

[20]   Bray, K.N.C. and Cant, R.S. (1991) Some Applications of Kolmogorov’s Turbulence Research in the Field of Combustion. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 434, 217-240.
https://doi.org/10.1098/rspa.1991.0090

[21]   Suri, B., Tithof, J., Mitchell, R., Grigoriev, R.O. and Schatz, M.F. (2014) Velocity Profile in a Two-Layer Kolmogorov-Like Flow. Physics of Fluids (1994-Present), 26, Article ID: 053601.
https://doi.org/10.1063/1.4873417

[22]   Boratav, O.N. and Pelz, R.B. (1997) Structures and Structure Functions in the Inertial Range of Turbulence. Physics of Fluids (1994-Present), 9, 1400-1415.
https://doi.org/10.1063/1.869253

[23]   Lilly, D. (1971) Numerical Simulation of Developing and Decaying Two-Dimensional Turbulence. Journal of Fluid Mechanics, 45, 395-415.
https://doi.org/10.1017/S0022112071000107

[24]   Fortova, S. (2013) Numerical Simulation of the Three-Dimensional Kolmogorov Flow in a Shear Layer. Computational Mathematics and Mathematical Physics, 53, 311-319.
https://doi.org/10.1134/S0965542513030056

[25]   Kolmogorov, A.N. and Shiryayev, A.N. (1992) Selected Works of an Kolmogorov: Vol. 2, Probability Theory and Mathematical Statistics. Kluwer Academic, Berlin.

[26]   Bondarenko, N., Gak, M. and Dolzhanskii, F. (1979) Laboratory and Theoretical Models of Plane Periodic Flow. Akademiia Nauk SSSR Fizika Atmosfery i Okeana, 15, 1017-1026.

[27]   Boffetta, G., Celani, A. and Mazzino, A. (2005) Drag Reduction in the Turbulent Kolmogorov Flow. Physical Review E, 71, Article ID: 036307.
https://doi.org/10.1103/PhysRevE.71.036307

[28]   Brutyan, M. and Krapivskii, P. (1991) Stability of Kolmogorov Flow in a Viscoelastic Fluid. Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti, 4, 17.

[29]   Thess, A. (1992) Instabilities in Two-Dimensional Spatially Periodic Flows. Part I: Kolmogorov Flow. Physics of Fluids A: Fluid Dynamics (1989-1993), 4, 1385-1395.
https://doi.org/10.1063/1.858415

[30]   Thess, A. (1992) Instabilities in Two-Dimensional Spatially Periodic Flows. Part II: Square Eddy Lattice. Physics of Fluids A: Fluid Dynamics (1989-1993), 4, 1396-1407.
https://doi.org/10.1063/1.858521

[31]   Thess, A. (1993) Instabilities in Two-Dimensional Spatially Periodic Flows. Part III: Inviscid Triangular Lattice. Physics of Fluids A: Fluid Dynamics (1989-1993), 5, 335-343.
https://doi.org/10.1063/1.858858

[32]   Sommeria, J. and Moreau, R. (1982) Why, How, and When, MHD Turbulence Becomes Two-Dimensional. Journal of Fluid Mechanics, 118, 507-518.
https://doi.org/10.1017/S0022112082001177

[33]   Sommeria, J. (1986) Experimental Study of the Two-Dimensional Inverse Energy Cascade in a Square Box. Journal of Fluid Mechanics, 170, 139-168.
https://doi.org/10.1017/S0022112086000836

[34]   Thess, A. (1993) Inviscid Instabilities in Two-Dimensional Spatially Periodic Flows. In: Nieuwstadt, F.T.M., Ed., Advances in Turbulence IV, Springer Netherlands, 79-84.
https://doi.org/10.1007/978-94-011-1689-3_14

[35]   Dubrulle, B. and Frisch, U. (1991) Eddy Viscosity of Parity-Invariant Flow. Physical Review A, 43, 5355.
https://doi.org/10.1103/PhysRevA.43.5355

[36]   Henon, M. and Scholl, H. (1991) Lattice-Gas Simulation of a Nontransverse Large-Scale Instability for a Modified Kolmogorov Flow. Physical Review A, 43, 5365.
https://doi.org/10.1103/PhysRevA.43.5365

[37]   Frisch, U., Legras, B. and Villone, B. (1996) Large-Scale Kolmogorov Flow on the Beta-Plane and Resonant Wave Interactions. Physica D: Nonlinear Phenomena, 94, 36-56.
https://doi.org/10.1016/0167-2789(95)00304-5

[38]   Cahn, J.W. and Hilliard, J.E. (1958) Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 28, 258-267.
https://doi.org/10.1063/1.1744102

[39]   Wang, L.-P., Chen, S., Brasseur, J.G. and Wyngaard, J.C. (1996) Examination of Hypotheses in the Kolmogorov Refined Turbulence Theory through High-Resolution Simulations. Part 1. Velocity Field. Journal of Fluid Mechanics, 309, 113-156.
https://doi.org/10.1017/S0022112096001589

[40]   Obukhov, A. (1962) Some Specific Features of Atmospheric Turbulence. Journal of Geophysical Research, 67, 3011-3014.
https://doi.org/10.1029/JZ067i008p03011

[41]   Wang, L.-P., Chen, S. and Brasseur, J.G. (1999) Examination of Hypotheses in the Kolmogorov Refined Turbulence Theory through High-Resolution Simulations. Part 2. Passive Scalar Field. Journal of Fluid Mechanics, 400, 163-197.
https://doi.org/10.1017/S0022112099006448

[42]   Burgess, J.M., Bizon, C., McCormick, W., Swift, J. and Swinney, H.L. (1999) Instability of the Kolmogorov Flow in a Soap Film. Physical Review E, 60, 715.
https://doi.org/10.1103/PhysRevE.60.715

[43]   Childress, S., Kerswell, R. and Gilbert, A. (2001) Bounds on Dissipation for Navier-Stokes Flow with Kolmogorov Forcing. Physica D: Nonlinear Phenomena, 158, 105-128.
https://doi.org/10.1016/S0167-2789(01)00320-7

[44]   Chen, Z.-M. and Price, W.G. (2002) Supercritical Regimes of Liquid-Metal Fluid Motions in Electromagnetic Fields: Wall-Bounded Flows. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 458, 2735-2757.

[45]   Kolesnikov, Y.B. (1985) Experimental Investigation of Instability of Plane-Parallel Shear Flow in a Magnetic Field. Magnetohydrodynamics, 21, 60-66.

[46]   Oparina, E. and Troshkin, O. (2004) Stability of Kolmogorov Flow in a Channel with Rigid Walls. Doklady Physics, 49, 583-587.
https://doi.org/10.1134/1.1815419

[47]   Chen, Z.-M. and Price, W.G. (2005) Secondary Fluid Flows Driven Electromagnetically in a Two-Dimensional Extended Duct. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 461, 1659-1683.
https://doi.org/10.1098/rspa.2005.1454

[48]   Bistagnino, A., Boffetta, G., Celani, A., Mazzino, A., Puliafito, A. and Vergassola, M. (2007) Nonlinear Dynamics of the Viscoelastic Kolmogorov Flow. Journal of Fluid Mechanics, 590, 61-80.
https://doi.org/10.1017/S0022112007007859

[49]   Oldroyd, J. (1950) On the Formulation of Rheological Equations of State. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 200, 523-541.
https://doi.org/10.1098/rspa.1950.0035

[50]   Berti, S. and Boffetta, G. (2010) Elastic Waves and Transition to Elastic Turbulence in a Two-Dimensional Viscoelastic Kolmogorov Flow. Physical Review E, 82, Article ID: 036314.
https://doi.org/10.1103/PhysRevE.82.036314

[51]   Mishra, P.K., Herault, J., Fauve, S. and Verma, M.K. (2015) Dynamics of Reversals and Condensates in Two-Dimensional Kolmogorov Flows. Physical Review E, 91, Article ID: 053005.
https://doi.org/10.1103/PhysRevE.91.053005

[52]   Lorenz, E.N. (1972) Barotropic Instability of Rossby Wave Motion. Journal of the Atmospheric Sciences, 29, 258-265.
https://doi.org/10.1175/1520-0469(1972)029<0258:BIORWM>2.0.CO;2

[53]   Gill, A. (1974) The Stability of Planetary Waves on an Infinite Beta-Plane. Geophysical and Astrophysical Fluid Dynamics, 6, 29-47.
https://doi.org/10.1080/03091927409365786

[54]   Manfroi, A. and Young, W. (2002) Stability of β-Plane Kolmogorov Flow. Physica D: Nonlinear Phenomena, 162, 208-232.
https://doi.org/10.1016/S0167-2789(01)00384-0

[55]   Frenkel, A.L. (1991) Stability of an Oscillating Kolmogorov Flow. Physics of Fluids A: Fluid Dynamics (1989-1993), 3, 1718-1729.
https://doi.org/10.1063/1.857951

[56]   Feudel, F. and Seehafer, N. (1995) Bifurcations and Pattern Formation in a Two-Dimensional Navier-Stokes Fluid. Physical Review E, 52, 3506.
https://doi.org/10.1103/PhysRevE.52.3506

[57]   Platt, N., Sirovich, L. and Fitzmaurice, N. (1991) An Investigation of Chaotic Kolmogorov Flows. Physics of Fluids A: Fluid Dynamics (1989-1993), 3, 681-696.
https://doi.org/10.1063/1.858074

[58]   Love, P. (1999) Bifurcations in Kolmogorov and Taylor-Vortex Flows. Ph.D. Thesis, Center for Research on Parallel Computation, Rice University, Houston.

[59]   Legras, B., Villone, B. and Frisch, U. (1999) Dispersive Stabilization of the Inverse Cascade for the Kolmogorov Flow. Physical Review Letters, 82, 4440.
https://doi.org/10.1103/PhysRevLett.82.4440

[60]   Legras, B. and Villone, B. (2009) Large-Scale Instability of a Generalized Turbulent Kolmogorov Flow. Nonlinear Processes in Geophysics, 16, 569-577.
https://doi.org/10.5194/npg-16-569-2009

[61]   Matsuda, M. and Miyatake, S. (2002) Bifurcation Analysis of Kolmogorov Flows. Tohoku Mathematical Journal, 54, 329-365.
https://doi.org/10.2748/tmj/1113247600

[62]   Tithof, J., Suri, B., Pallantla, R.K., Grigoriev, R.O. and Schatz, M.F. (2016) An Experimental and Numerical Investigation of Bifurcations in a Kolmogorov-Like Flow. arXiv Preprint arXiv:1601.00243.

[63]   Davis, P. and Peltier, W. (1976) Resonant Parallel Shear Instability in the Stably Stratified Planetary Boundary Layer. Journal of the Atmospheric Sciences, 33, 1287-1300.
https://doi.org/10.1175/1520-0469(1976)033<1287:RPSIIT>2.0.CO;2

[64]   Sarris, I., Grigoriadis, D. and Vlachos, N. (2010) Laminar Free Convection in a Square Enclosure Driven by the Lorentz Force. Numerical Heat Transfer, Part A: Applications, 58, 923-942.
https://doi.org/10.1080/10407782.2010.529034

[65]   Holford, J.M. and Linden, P. (1999) Turbulent Mixing in a Stratified Fluid. Dynamics of Atmospheres and Oceans, 30, 173-198.
https://doi.org/10.1016/S0377-0265(99)00025-1

[66]   Ponetti, G., Sammartino, M. and Sciacca, V. (2016) Transitions in a Stratified Kolmogorov Flow. Ricerche di Matematica, 66, 189-199.
https://doi.org/10.1007/s11587-016-0296-6

[67]   Linden, P. (1980) Mixing across a Density Interface Produced by Grid Turbulence. Journal of Fluid Mechanics, 100, 691-703.
https://doi.org/10.1017/S002211208000136X

[68]   Redondo, J., Sanchez, M. and Cantalapiedra, I. (1996) Turbulent Mechanisms in Stratified Fluids. Dynamics of Atmospheres and Oceans, 24, 107-115.
https://doi.org/10.1016/0377-0265(95)00454-8

[69]   Fernando, H.J. (1991) Turbulent Mixing in Stratified Fluids. Annual Review of Fluid Mechanics, 23, 455-493.
https://doi.org/10.1146/annurev.fl.23.010191.002323

[70]   Ponetti, G., Sammartino, M. and Sciacca, V. (2014) Formation of Coherent Structures in Kolmogorov Flow with Stratification and Drag. Acta Applicandae Mathematicae, 132, 483-492.
https://doi.org/10.1007/s10440-014-9927-7

[71]   Bena, I., Mansour, M.M. and Baras, F. (1999) Hydrodynamic Fluctuations in the Kolmogorov Flow: Linear Regime. Physical Review E, 59, 5503.
https://doi.org/10.1103/PhysRevE.59.5503

[72]   Bena, I., Baras, F. and Mansour, M.M. (2000) Hydrodynamic Fluctuations in the Kolmogorov Flow: Nonlinear Regime. Physical Review E, 62, 6560.
https://doi.org/10.1103/PhysRevE.62.6560

[73]   Landau, L. and Lifshitz, E. (1987) Fluid Mechanics: Volume 6 (Course of Theoretical Physics). 2nd Edition, Pergamon Press, Exeter.

[74]   Mansour, M.M., Van den Broeck, C., Bena, I. and Baras, F. (1999) Spurious Diffusion in Particle Simulations of the Kolmogorov Flow. EPL (Europhysics Letters), 47, 8.
https://doi.org/10.1209/epl/i1999-00342-y

[75]   Roeller, K., Vollmer, J.R. and Herminghaus, S. (2009) Unstable Kolmogorov Flow in Granular Matter. Chaos (Woodbury, NY), 19, 041106-041106.
https://doi.org/10.1063/1.3202616

[76]   Beyer, P. and Benkadda, S. (2001) Advection of Passive Particles in the Kolmogorov Flow. Chaos: An Interdisciplinary Journal of Nonlinear Science, 11, 774-779.
https://doi.org/10.1063/1.1406538

[77]   Mitchell Jr., R. and Grigoriev, R.O. (2012) Instabilities and Mixing in Two-Dimensional Kolmogorov Flow. arXiv Preprint arXiv:1212.2890.

[78]   Birta, L.G. and Ozmizrak, F.N. (1996) A Knowledge-Based Approach for the Validation of Simulation Models: The Foundation. ACM Transactions on Modeling and Computer Simulation (TOMACS), 6, 76-98.
https://doi.org/10.1145/229493.229511

[79]   Olenev, N.N. (2011) Modeling and Simulation Techniques.
http://www.eolss.net/outlinecomponents/Systems-Analysis-Modeling-Integrated-World-Systems.aspx

[80]   Samarskii, A.A. and Mikhailov, A.P. (2001) Principles of Mathematical Modelling: Ideas, Methods, Examples. CRC Press, Boca Raton.

[81]   Benettin, G., Galgani, L. and Strelcyn, J.-M. (1976) Kolmogorov Entropy and Numerical Experiments. Physical Review A, 14, 2338.
https://doi.org/10.1103/PhysRevA.14.2338

[82]   Kalis, K. and Kolesnikov, Y. (1988) Numerical Realization of Kolmogorov Flow in a Strong Magnetic Field. Magnetohydrodynamics (English Translation: Plenum Publishing Corproration, United States), 24, 454-459.

[83]   Posch, H. and Hoover, W. (1997) Simulation of Two-Dimensional Kolmogorov Flow with Smooth Particle Applied Mechanics. Physica A: Statistical Mechanics and Its Applications, 240, 286-296.
https://doi.org/10.1016/S0378-4371(97)00152-0

[84]   Shebalin, J.V. and Woodruff, S.L. (1997) Kolmogorov Flow in Three Dimensions. Physics of Fluids (1994-Present), 9, 164-170.
https://doi.org/10.1063/1.869159

[85]   Borue, V. and Orszag, S.A. (1996) Numerical Study of Three-Dimensional Kolmogorov Flow at High Reynolds Numbers. Journal of Fluid Mechanics, 306, 293-323.
https://doi.org/10.1017/S0022112096001310

[86]   Woodruff, S., Seiner, J. and Hussaini, M. (1999). Direct Numerical and Large Eddy Simulations of Non Equilibrium Turbulent Kolmogorov Flow.
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000014450_2000013292.pdf

[87]   Woodruff, S., Seiner, J. and Hussaini, M. (2000) Grid-Size Dependence in the Large-Eddy Simulation of Kolmogorov Flow. AIAA Journal, 38, 600-604.
https://doi.org/10.2514/2.1030

[88]   Schaefer, P., Gampert, M., Goebbert, J.H., Wang, L. and Peters, N. (2010) Testing of Model Equations for the Mean Dissipation Using Kolmogorov Flows. Flow, Turbulence and Combustion, 85, 225-243.
https://doi.org/10.1007/s10494-010-9273-4

[89]   Jones, W. and Launder, B. (1972) The Prediction of Laminarization with a Two-Equation Model of Turbulence. International Journal of Heat and Mass Transfer, 15, 301-314.
https://doi.org/10.1016/0017-9310(72)90076-2

[90]   Menter, F., Egorov, Y. and Rusch, D. (2006) Steady and Unsteady Flow Modelling Using the k-SQRT(k).k l-Model. Turbulence, Heat and Mass Transfer, 5, 25-29.

[91]   Zhang, J. and Fan, J. (2011) Monte Carlo Simulation of Two-Dimensional Kolmogorov Flow. 27th International Symposium on Rarefied Gas Dynamics, Pacific Grove, 10-15 July 2010, 378-384.

[92]   Sarris, I., Jeanmart, H., Carati, D. and Winckelmans, G. (2007) Box-Size Dependence and Breaking of Translational Invariance in the Velocity Statistics Computed from Three-Dimensional Turbulent Kolmogorov Flows. Physics of Fluids, 19, Article ID: 095101.

[93]   Tsang, Y.-K. and Young, W.R. (2008) Energy-Enstrophy Stability of β-Plane Kolmogorov Flow with Drag. Physics of Fluids (1994-Present), 20, Article ID: 084102.

[94]   Doering, C.R. and Constantin, P. (1994) Variational Bounds on Energy Dissipation in Incompressible Flows: Shear Flow. Physical Review E, 49, 4087.
https://doi.org/10.1103/PhysRevE.49.4087

[95]   Kramár, M., Levanger, R., Tithof, J., Suri, B., Xu, M., Paul, M., et al. (2016) Analysis of Kolmogorov Flow and Rayleigh-Bénard Convection using Persistent Homology. Physica D: Nonlinear Phenomena, 334, 82-98.
https://doi.org/10.1016/j.physd.2016.02.003

[96]   Batchaev, A. and Ponomarev, V. (1989) Experimental and Theoretical Investigation of Kolmogorov Flow on a Cylindrical Surface. Fluid Dynamics, 24, 675-680.
https://doi.org/10.1007/BF01051717

[97]   Kelley, D.H. and Ouellette, N.T. (2011) Using Particle Tracking to Measure Flow Instabilities in an Undergraduate Laboratory Experiment. American Journal of Physics, 79, 267-273.
https://doi.org/10.1119/1.3536647

[98]   Rivera, M. and Ecke, R. (2005) Pair Dispersion and Doubling Time Statistics in Two-Dimensional Turbulence. Physical Review Letters, 95, 194503.
https://doi.org/10.1103/PhysRevLett.95.194503

[99]   Rossi, L., Doorly, D. and Kustrin, D. (2012) Lamination and Mixing in Laminar Flows Driven by Lorentz Body Forces. EPL (Europhysics Letters), 97, 14006.
https://doi.org/10.1209/0295-5075/97/14006

[100]   Chomaz, J., Rabaud, M., Basdevant, C. and Couder, Y. (1988) Experimental and Numerical Investigation of a Forced Circular Shear Layer. Journal of Fluid Mechanics, 187, 115-140.
https://doi.org/10.1017/S0022112088000369

[101]   Nakamura, Y. (1997) Spatio-Temporal Dynamics of Forced Periodic Flows in a Confined Domain. Physics of Fluids (1994-Present), 9, 3275-3287.
https://doi.org/10.1063/1.869442

[102]   Dolzhanskii, F., Krymov, V. and Manin, D.Y. (1992) An Advanced Experimental Investigation of Quasi-Two-Dimensional Shear Flow. Journal of Fluid Mechanics, 241, 705-722.
https://doi.org/10.1017/S0022112092002209

[103]   Pu, J.H. (2015) Turbulence Modelling of Shallow Water Flows Using Kolmogorov Approach. Computers & Fluids, 115, 66-74.
https://doi.org/10.1016/j.compfluid.2015.03.010

[104]   Launder, B.E. and Spalding, D.B. (1974) The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, 3, 269-289.
https://doi.org/10.1016/0045-7825(74)90029-2

[105]   Musacchio, S. and Boffetta, G. (2014) Turbulent Channel without Boundaries: The Periodic Kolmogorov Flow. Physical Review E, 89, Article ID: 023004.
https://doi.org/10.1103/PhysRevE.89.023004

[106]   Lucas, D. and Kerswell, R. (2014) Spatiotemporal Dynamics in Two-Dimensional Kolmogorov Flow over Large Domains. Journal of Fluid Mechanics, 750, 518-554.
https://doi.org/10.1017/jfm.2014.270

[107]   van Veen, L. and Goto, S. (2016) Sub Critical Transition to Turbulence in Three-Dimensional Kolmogorov Flow. Fluid Dynamics Research, 48, Article ID: 061425.
https://doi.org/10.1088/0169-5983/48/6/061425

[108]   Maslov, V. (2008) Economic Law of Increase of Kolmogorov Complexity. Transition from Financial Crisis 2008 to the Zero-Order Phase Transition (Social Explosion). arXiv Preprint arXiv:0812.4737.

[109]   Brewer, J.W. (1989) The Age-Dependent Eigenfunctions of Certain Kolmogorov Equations of Engineering, Economics, and Biology. Applied Mathematical Modelling, 13, 47-57.
https://doi.org/10.1016/0307-904X(89)90197-2

[110]   Scharinger, J. (1997) Fast Encryption of Image Data Using Chaotic Kolmogorov Flows. Journal of Electronic Imaging, 7, 318-326.
https://doi.org/10.1117/1.482647

 
 
Top