Back
 MSA  Vol.9 No.12 , November 2018
Thermomechanical Characterisation of Compressed Clay Bricks Reinforced by Thatch Fibres for the Optimal Use in Building
Abstract: Thatch fibres grow in large quantity in the Adamawa region of Cameroon. During the long dry season, these fibres cause numerous fire incidents, which not only devastate large areas of cash crops, but also contribute to increase emissions of greenhouse gases into the atmosphere. This article aims to show how fibres could be used with compressed clay bricks to manufacture an insulating material used in building. Four fibre contents 1%, 2%, 3% and 4% made up the sample studied. The asymmetric hot plate methodology was used to determine the thermophysical properties of these composite materials. The volumetric heat capacity and the thermal effusivity of these materials were estimated. These two parametres were used to determine their apparent thermal conductivities. The results obtained show that the thermal conductivity decreases as the volume of fibres in the mixture increases. It is 0.689 W·m-1·K-1 for simple compressed clay bricks and 0.510 W·m-1·K-1 for a dosage at 3% of thatch fibres. In a bit to validate the results of the pilot study of the apparent thermal conductivity, the heat mass capacity of this composite material was achieved through the use of the dehydration method. The relative difference obtained with the results of the volumetric heat capacity carried out with these two methods was good. All results showed that the use of fibres in compressed laterite brick gives a more insulating composite material that respects Civil Engineering Norms.
Cite this paper: Nitcheu, M. , Meukam, P. , Damfeu, J. and Njomo, D. (2018) Thermomechanical Characterisation of Compressed Clay Bricks Reinforced by Thatch Fibres for the Optimal Use in Building. Materials Sciences and Applications, 9, 913-935. doi: 10.4236/msa.2019.912066.
References

[1]   Olivier, J.G.J., Schure, K. and Peters, J. (2017) Trends in Global CO2 and Total Greenhouse Gas Emissions. Summary of 2017 Report. PBL Netherlands Environmental Assessment Agency.

[2]   Meggers, F., Leibundgut, H., Kennedy, S., Qind, M., Schlaiche, M., Sobekf, W. and Shukuyag, M. (2012) Reduce CO2 from Buildings With Technology to Zero Emissions. Sustainable Cities and Society, 2, 29-36.
https://doi.org/10.1016/j.scs.2011.10.001

[3]   Osseni, S.O.G, Apovo, B.D., Ahouannou, C., Sany E.A. and Jannot, Y. (2016) Caractérisation thermique des mortiers de ciment dopés en fibres de coco par la méthode du plan chaud asymétrique à une mesure de température. Afrique Science, 12, 119-129.

[4]   Meukam, P., Noumowe, A., Jannot Y. and Duval, R. (2003) Caractérisation thermophysique et mécanique des briques de terre stabilisées en vue de l’isolation thermique de batiment. Materials and Structures, 36, 453-446.
https://doi.org/10.1007/BF02481525

[5]   Lamkharouet, N., Boussaid, S., Ezbakhe, H., EL Bakkouri, A., Ajzoul, T. and El Bouard, A. (2001) Etude thermique de la terre de Larache stabilisée au Ciment. Laboratoire de Thermique, Energie solaire & Environnement, Faculté des Sciences, Université Abdelmalek Essaadi, Tétouan, 541-546.

[6]   Bal, H., Jannot, Y., Gaye, S. and Demeurie, F. (2013) Measurement and Modelisation of the Thermal Conductivity of a Wet Composite Porous Medium: Laterite Based Bricks with Millet Waste Additive. Construction and Building Materials, 41, 586-593.
https://doi.org/10.1016/j.conbuildmat.2012.12.032

[7]   Meukam, P., Jannot, Y., Noumowe, A. and Kofane, T.C. (2004) Thermophysical Characteristics of Economical Building Materials. Construction and Building Materials, 18, 437-443.
https://doi.org/10.1016/j.conbuildmat.2004.03.010

[8]   Damfeu, J.C., Meukam, P. and Jannot, Y. (2016) Modeling and Measuring of the Thermal Properties of Insulating Vegetable Fibers by the Asymmetrical Hot Plate Method and the Radial Flux Method: Kapok, Coconut, Groundnut Shell Fiber and Rattan. Thermochimica Acta, 630, 64-77.
https://doi.org/10.1016/j.tca.2016.02.007

[9]   Damfeu, J.C., Meukam, P., Jannot, Y. and Wati, E.(2017) Modelling and Experimental Determination of Thermal Properties of Local Wet Building Materials. Energy and Buildings, 135, 109-118.
https://doi.org/10.1016/j.enbuild.2016.11.022

[10]   Elhamdouni, Y., Khabbazi, A., Benayad, C., Mounir, S. and Dadi, A. (2017) Thermophysical and Mechanical Characterization of Clay Bricks Reinforced by Alfa or Straw Fibers. IOP Conference Series: Materials Science and Engineering, Vol. 186, Beijing, 12-35.

[11]   Houben, H. (2009) Blocs de Terre Comprimé: Normes. CDI, Philadelphia.

[12]   Elimbi, A. (2005) MIPROMALO: Protocoles d’analyses des matières premières et des produits finis au laboratoire.

[13]   MINTP (2009) Séminaire de renforcement des capacités des controleurs du Ministère des Travaux Publiques aux techniques de controle de qualité des constructions en BTC. Yaounde.

[14]   Petkova, R. and Zlatev, P. (2017) Thermal Insulating Properties of Straw Filled Environmentally Friendly Building Materials. Vol. 13, 52-57.

[15]   Azhary El, K., Chihab, Y., Mansour, M., Laaroussi, N. and Garoum, M. (2017) Energy Efficiency and Thermal Properties of the Composite Material Clay-Straw. Energy Procedia, 141, 160-164.
https://doi.org/10.1016/j.egypro.2017.11.030

[16]   Kossi, I.B., Florent, P.K. and Ouedraogo, E. (2014) Thermal and Mechanical Study of the Adobe Stabilized with Straws and/or Cement at Different Rate. International Journal of Engineering and Innovative Technology, 4.

[17]   Maillet, D., Andre, S., Batsale, J.C., Degiovanni, A. and Moyne, C. (2000) Thermal Quadrupoles. Wiley, New York.

[18]   De Hoog, F.R. and Stokes, A.N. (1982) A Improved Method for Numerical Inversion of Laplace Transforms. SIAM Journal on Scientific and Statistical Computing, 3, 357-366.
https://doi.org/10.1137/0903022

[19]   Gill, P.E. and Murray, W. (1978) Algorithms for the Solution of the Nonlinear Least-Squares Problems. Journal of Numerical Analysis, 15, 977-992.

[20]   Bories, S. and Prantt, M. (1995) Transferts de chaleur dans les milieux poreux. Tech. Ing., B8 (250).

 
 
Top