Back
 JAMP  Vol.6 No.11 , November 2018
Integrability of Hamiltonian Systems with Two Degrees of Freedom and Homogenous Potential of Degree Zero
Abstract: We provide necessary conditions in order that the Hamiltonian systems with Hamiltonian and one of the following potentials  are integrable in the Liouville sense.
Cite this paper: Llibre, J. and Valls, C. (2018) Integrability of Hamiltonian Systems with Two Degrees of Freedom and Homogenous Potential of Degree Zero. Journal of Applied Mathematics and Physics, 6, 2192-2201. doi: 10.4236/jamp.2018.611184.
References

[1]   Boundis, T., Segur, H. and Vivaldi, F. (1982) Integrable Hamiltonian Systems and the Painlevé Property. Physical Review A, 25, 1257-1264.
https://doi.org/10.1103/PhysRevA.25.1257

[2]   Chang, Y.F., Tabor, M. and Weiss, J. (1982) Analytic Structure of the Hénon-Heiles Hamiltonian in Integrable and Nonintegrable Regimes. Journal of Mathematical Physics, 23, 531-538.
https://doi.org/10.1063/1.525389

[3]   Christopher, C., Llibre, J. and Pereira, J.V. (2007) Multiplicity of Invariant Algebraic Curves in Polynomial Vector Fields. Pacific Journal of Mathematics, 229, 63-117.
https://doi.org/10.2140/pjm.2007.229.63

[4]   Darboux, G. (1878) Mémoire sur les équations différentielles du premier ordre et du premier degreé (Mélanges). Bulletin des Sciences Mathématiques, 2, 60-96, 123-144, 151-200.

[5]   Darboux, G. (1878) De l'emploi des solutions particulières algébriques dans l'intégration des systèmes d'équations différentielles algébriques. Comptes rendus de l’Académie des Sciences, 86, 1012-1014.

[6]   Dumortier, F., Llibre, J. and Artés, J.C. (2006) Qualitative Theory of Planar Differential Systems. Universitext. Springer-Verlag, Berlin.

[7]   Furta, S.D. (1996) On Non-Integrability of General Systems of Differential Equations. Zeitschrift für angewandte Mathematik und Physik, 47, 112-131.
https://doi.org/10.1007/BF00917577

[8]   Gonzalez-Gascon, F. (1988) A Word of Caution Concerning the Yoshida Criterion on Algebraic Integrability and Kowalevski Exponents. Celestial Mechanics and Dynamical Astronomy, 44, 309-311.
https://doi.org/10.1007/BF01234269

[9]   Goriely, A. (1996) Integrability, Partial Integrability, and Nonintegrability for Systems of Ordinary Differential Equations. Journal of Mathematical Physics, 37, 1871-1893.
https://doi.org/10.1063/1.531484

[10]   Grammaticos, B., Dorizzi, B. and Padjen, R. (1982) Painlevé Property and Integrals of Motion for the Hénon-Heiles System. Physics Letters A, 89, 111-113.
https://doi.org/10.1016/0375-9601(82)90868-4

[11]   Hall, L.S. (1983) A Theory of Exact and Approximate Configurational Invariants. Journal of Physics D, 8, 90-116.
https://doi.org/10.1016/0167-2789(83)90312-3

[12]   Hietarinta, J. (1983) A Search for Integrable Two Dimensional Hamiltonian Systems with Polynomial Potential. Physics Letters A, 96, 273-278.
https://doi.org/10.1016/0375-9601(83)90178-0

[13]   Hietarinta, J. (1987) Direct Methods for the Search of the Second Invariant. Physics Reports, 147, 87-154.
https://doi.org/10.1016/0370-1573(87)90089-5

[14]   Llibre, J., Mahdi, A. and Valls, C. (2011) Analytic Integrability of Hamiltonian Systems with a Homogeneous Polynomial Potential of Degree 4. Journal of Mathematical Physics, 52, Article ID: 012702.
https://doi.org/10.1063/1.3544473

[15]   Llibre, J., Mahdi, A. and Valls, C. (2011) Polynomial Integrability of the Hamiltonian Systems with Homogeneous Potential of Degree-2. Physics Letters A, 375, 1845-1849.
https://doi.org/10.1016/j.physleta.2011.03.042

[16]   Llibre, J., Mahdi, A. and Valls, C. (2011) Polynomial Integrability of the Hamiltonian Systems with Homogeneous Potential of Degree-3. Physics D, 240, 1928-1935.
https://doi.org/10.1016/j.physd.2011.09.003

[17]   Llibre, J. and Peralta-Salas, D. (2012) A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers. SIGMA, 8, 1-9.

[18]   Llibre, J. and Valls, C. (2014) Darboux Integrability of 2-Dimensional Hamiltonian Systems with Homogenous Potentials of Degree 3. Journal of Mathematical Physics, 55, Article ID: 033507.

[19]   Llibre, J. and Valls, C. (2015) Analytic Integrability of Hamiltonian Systems with Exceptional Potentials. Physics Letters A, 379, 2295-2299.
https://doi.org/10.1016/j.physleta.2015.07.034

[20]   Llibre, J. and Valls, C. (2017) On the Integrability of Hamiltonian Systems with d Degrees of Freedom and Homogenous Polynomial Potential of Degree n, to Appear in Communications in Contemporary Mathematics.

[21]   Llibre, J. and Zhang, X. (2002) Polynomial First Integrals for Quasi-Homogeneous Polynomial Differential Systems. Nonlinearity, 15, 1269-1280.
https://doi.org/10.1088/0951-7715/15/4/313

[22]   Llibre, J. and Zhang, X. (2009) Darboux Theory of Integrability for Polynomial Vector Fields in Rn Taking into Account Their Multiplicity at Infinity. Bulletin des Sciences Mathématiques, 133, 765-778.
https://doi.org/10.1016/j.bulsci.2009.06.002

[23]   Maciejewski, A.J. and Przybylska, M. (2004) All Meromorphically Integrable 2D Hamiltonian Systems with Homogeneous Potential of Degree 3. Physics Letters A, 327, 461-473.

[24]   Maciejewski, A.J. and Przybylska, M. (2005) Darboux Points and Integrability of Hamiltonian Systems with Homogeneous Polynomial Potential. Journal of Mathematical Physics, 46, Article ID: 062901.

[25]   Morales Ruiz, J.J. (1999) Differential Galois Theory and Non-Integrability of Hamiltonian Systems. Progress in Mathematics, Vol. 179, Birkhauser Verlag, Basel.
https://doi.org/10.1007/978-3-0348-0723-4

[26]   Ramani, A., Dorizzi, B. and Grammaticos, B. (1982) Painlevé Conjecture Revisited. Physical Review Letters, 49, 1539-1541.
https://doi.org/10.1103/PhysRevLett.49.1539

[27]   Tsygvintsev, A. (2001) On the Existence of Polynomial First Integrals of Quadratic Homogeneous Systems of Ordinary Differential Equations. Journal of Physics A: Mathematical and General, 34, 2185-2193.
https://doi.org/10.1088/0305-4470/34/11/311

[28]   Yoshida, H. (1983) Necessary Conditions for Existence of Algebraic First Integrals I and II. Celestial Mechanics, 31, 363-379, 381-399.
https://doi.org/10.1007/BF01230292

[29]   Yoshida, H. (1988) A Note on Kowalevski Exponents and the Non-Existence of an Additional Analytic Integral. Celestial Mechanics, 44, 313-316.
https://doi.org/10.1007/BF01234270

[30]   Yoshida, H. (1989) A Criterion for the Non-Existence of an Additional Analytic Integral in Hamiltonian Systems with n Degrees of Freedom. Physics Letters A, 141, 108-112.
https://doi.org/10.1016/0375-9601(89)90768-8

[31]   Casale, G., Duval, G., Maciejewski, A.J. and Przybylska, M. (2010) Integrability of Hamiltonian Systems with Homogenous Potential of Degree Zero. Physics Letters A, 374, 448-452.
https://doi.org/10.1016/j.physleta.2009.11.018

 
 
Top