AiM  Vol.8 No.11 , November 2018
Biotechnological Potential of Endophytic Bacteria to Improve the Micropropagated Seedling of Variety RB92579 Sugarcane (Saccharum officinarum L.)
Abstract: Endophytic bacteria may influence agricultural production in several ways, including promoting plant growth. Two experiments were conducted in order to evaluate the combination of endophytic bacteria from the Brazilian Northeast region aims at the commercial introduction of the inoculation of these bacteria in micropropagated sugarcane plants using a temporary immersion bioreactor. One experiment was done in tubes with sterile commercial substrate, and the other was done in pots with soil; both were installed in a greenhouse. A mixed inoculation was performed in six inoculated endophytic diazotrophic bacteria in micropropagated sugarcane plants, variety RB92579. In the experiment with soil, the mixed inoculation significantly increased the shoot dry matter of plants without the addition of nitrogen fertilizer. However, the accumulation of total-N in the tissues showed no significant differences between treatments with and without nitrogen fertilization. The evaluation of micropropagated seedlings showed no increases in the parameters tested. The results showed that the response of inoculation in temporary immersion bioreactor micropropagation is possible, and that the application of homologous strains may have contributed to a better response by the interaction of endophytic bacteria with sugarcane RB92579. Further studies should be conducted to improve the methodology, which indicates a great potential to optimize this process on a commercial scale.
Cite this paper: Barreto, M. , Figueiredo, M. , da Silva, M. , de Andrade, A. , de Oliveira, J. , Almeida, C. , de Araújo, L. , Junior, O. , Junior, M. , da Costa, A. and Lima, V. (2018) Biotechnological Potential of Endophytic Bacteria to Improve the Micropropagated Seedling of Variety RB92579 Sugarcane (Saccharum officinarum L.). Advances in Microbiology, 8, 859-873. doi: 10.4236/aim.2018.811057.

[1]   Compainha Nacional de Abastecimento—CONAB (2018) Acompanhamento safra brasileira de cana. v 5, Safra 2018/2019, n. 1, Primeiro levantamento, Brasília.

[2]   Schultz, N., Pereira, W., Reis, V.M. and Urquiaga, S.S. (2016) Produtividade e diluição isotópica de 15N em Cana-De-Açúcar inoculada com bactérias diazotróficas. Pesquisa Agropecuária Brasileira, 51, 1594-1601.

[3]   Spatzal, T. (2015) The Center of Biological Nitrogen Fixation: FeMo-Cofactor. Zeitschrift für anorganische und allgemeine Chemie, 641, 10-17.

[4]   Oliveira, A.L.M., Urquiaga, S., Dobereiner, J. and Baldani, J.I. (2002) The Effect of Inoculating Endophitic N2-Fixing Bacteria on Micropropagated Sugarcane Plants. Plant and Soil, 242, 205-215.

[5]   Hoffman, B.M., Lukoyanov, D., Yang, Z., Dean, D.R. and Seefeldt, L.C. (2014) Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chemical Reviews, 114, 4041-4062.

[6]   Baldotto, L.E.B., Baldotto, M.A., Canellas, L.P., Bressan-Smith, R. and Olivares, F.L. (2010) Growth Promotion of Pineapple “VitóriA” by Humic Acids and Burkholderia spp. during Acclimatization. Revista Brasileira de Ciência do Solo, 34, 1593-1600.

[7]   Almeida, C.V., Andreote, F.D., Yara, R., Tanaka, F.A.O., Azevedo, J.L. and Almeida, M. (2009) Bacteriosomes in Axenic Plants: Endophytes as Stable Endosymbionts. World Journal Microbiology and Biotechnology, 25, 1757-1764.

[8]   Abreu-Tarazi, M.F., Navarrete, A.A., Andreote, F.D., Almeida, C.V., Tsai, S.M. and Almeida, M. (2010) Endophytic Bacteria in Long-Term in Vitro Cultivated ‘‘Axenic’’ Pineapple Microplants Revealed by PCR-DGGE. World Journal of Microbiology and Biotechnology, 26, 555-560.

[9]   Canuto, E.L., Salles, J.F., Oliveira, A.L.M., Perin, L., Reis, V.M. and Baldani, J.I. (2003) Resposta de plantas micropropagadas de Cana-De-Açúcar à inoculação de bactérias diazotróficas endofíticas. Agronomia, 37, 67-72.

[10]   Döbereiner, J., Baldani, V.L.D. and Baldani, J.I. (1995) Como isolar e identificar bactérias diazotróficas em plantas não leguminosas. EMBRAPA-SPI, Brasília.

[11]   Rodrigues Neto, J., Malavolta Júnior, V.A. and Victor, O. (1986) Meio simples para isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathologica, 12, 16.

[12]   Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Gene-Trak, D.J.L. (1991) 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology, 173, 697-703.

[13]   Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Tools. Nucleic Acids Research, 24, 4876-4882.

[14]   Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology Evolution, 30, 2725-2729.

[15]   Reis, V.M., Olivares, F.L., Oliveira, A.L.M., Reis Junior, F.B., Baldani, J.I. and Dobereiner, J. (1999) Technical Approaches to Inoculate Micropropagated Sugar Cane Plants Were Acetobacter diazotrophicus. Plant and Soil, 206, 205-211.

[16]   Alves, B.J.R., Santos, J.C.F., Urquiarga, S. and Boddey, R.M. (1994) Métodos de determinação do nitrogênio em solo e planta. In: Araújo, R.S. and Hungria, M., Eds., Manual de métodos empregados em estudos de microbiologia agrícola, EMBRPA-CNPAF, Documentos 46, Brasília, 449-467.

[17]   Silva, F.A.S. and Azevedo, C.A.V. (2016) The Assistant Software Version 7.7 and Its Use in the Analysis of Experimental Data. African Journal Agricultural Research, 11, 3733-3740.

[18]   Ratón, T.M.O., Yano, R., Gámez, O.R., Floh, E.I.S., Díaz, M.J.S. and Barbosa, H.R. (2012) Isolation and Characterisation of Aerobic Endospore Forming Bacilli from Sugarcane Rhizosphere for the Selection of Strains with Agriculture Potentialities. World Journal Microbiology and Biotechnology, 28, 1593-1603.

[19]   Szilagyi-Zecchin, V.J., Ikeda, A.C., Hungria, M., Adamoski, D., Kava-Cordeiro, V., Glienke, C. and Galli-Terasawa, L.V. (2014) Identification and Characterization of Endophytic Bacteria from Corn (Zea mays L.) Roots with Biotechnological Potential in Agriculture. AMB Express, 4, 1-9.

[20]   Rhoden, S.A., Garcia, A., Santos e Silva, M.C., Azevedo, J.L. and Pamphile, J.A. (2015) Phylogenetic Analysis of Endophytic Bacterial Isolates from Leaves of the Medicinal Plant Trichilia elegans A. Juss. (Meliaceae). Genetics and Molecular Research, 14, 1515-1525.

[21]   Hurtle, W., Bode, E., Kulesh, D.A., Kaplan, R.S., Garrison, J., Bridge, D., House, M., Frye, M.S., Loveless, B. and Norwood, D. (2004) Detection of the Bacillus anthracis gyrA Gene by Using a Minor Groove Binder Probe. Journal of Clinical Microbiology, 42, 179-185.

[22]   Youssef, N.H., Couger, M.B., Mccully, A.L., Criado, A.E.G. and Elshahed, M.S. (2015) Assessing the Global Phylum Level Diversity within the Bacterial Domain: A Review. Journal of Advanced Research, 6, 269-282.

[23]   Magnani, G.S., Didonet, C.M., Cruz, L.M., Picheth, C.F., Pedrosa, F.O. and Souza, E.M. (2010) Diversity of Endophytic Bacteria in Brazilian Sugarcane. Genetic and Molecular Research, 9, 250-258.

[24]   Kuklinsky-Sobral, J., Araújo, W.L., Mendes, R., Geraldi, I.O., Pizzirani-Kleiner, A.P. and Azevedo, J.L. (2004) Isolation and Characterization of Soybean-Associated Bacteria and Their Potential for Plant Growth Promotion. Environmental Microbiology, 12, 1244-1251.

[25]   Quecine, M.C., Araújo, W.L., Rossetto, P.B., Ferreira, A., Tsui, S., Lacava, P.T., Mondin, M., Azevedo, J.L. and Pizzirani-Kleinera, A.A. (2012) Sugarcane Growth Promotion by the Endophytic Bacterium Pantoea agglomerans 33.1. Applied and Environmental Microbiology, 78, 7511-7518.

[26]   Rashid, S., Charles, T.C. and Glick, B.R. (2012) Isolation and Characterization of New Plant Growth-Promoting Bacterial Endophytes. Applied Soil Ecology, 61, 217-224.

[27]   Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M.C. and Glick, B.R. (2016) Plant Growth-Promoting Bacterial Endophytes. Microbiological Research, 183, 92-99.

[28]   Jha, P.N., Gupta, G., Jha, P. and Mehrotra, R. (2013) Association of Rhizospheric/Endophytic Bacteria with Plants: A Potential Gateway to Sustainable Agriculture. Greener Journal of Agricultural Sciences, 3, 73-84.

[29]   Santi, C., Bogusz, D. and Franche, C. (2013) Biological Nitrogen Fixation in Nonlegume Plants. Annals of Botany, 111, 743-767.

[30]   Ambrosini, A., Souza, R. and Passaglia, L.M.P. (2016) Ecological Role of Bacterial Inoculants and Their Potential Impact on Soil Microbial Diversity. Plant and Soil, 400, 193-207.

[31]   Teale, W., Paponov, I. and Palme, K. (2006) Auxin in Action: Signalling, Transport and the Control of Plant Growth and Development. Nature Reviews Molecular Cell Biology, 7, 847-859.

[32]   Lin, L., Li, Z., Hu, C., Zhang, X., Chang, S., Yang, L., Li, Y. and An, Q. (2012) Plant Growth-Promoting Nitrogen-Fixing Enterobacteria Are in Association with Sugarcane Plants Growing in Guangxi, China. Microbes and Environments, 27, 391-398.

[33]   Govindarajan, M., Balandreau, J., Muthukumarasamy, R., Revathi, G. and Lakshminarasimhan, C. (2006) Improved Yield of Micropropagated Sugarcane Following Inoculation by Endophytic Burkholderia vietnamiensis. Plant and Soil, 280, 239-252.

[34]   Muthukumarasamy, R.R.G. and Lakshminarasimhan, C. (1999) Diazotrophic Bacterial Association in Sugarcane Cultivation in South India. Tropical Agriculture, 76, 171-178.

[35]   Chaves, V.A., Santos, S.G., Schultz, N., Pereira, W., Souza, J.S., Monteiro, R.C. and Reis, V.M. (2015) Desenvolvimento inicial de duas variedades de cana-de-açúcar inoculadas com bactérias diazotróficas. Revista Brasileira Ciência do Solo, 39, 1595-1602.

[36]   Moraes, V.A. and Tauk-Tornisielo, S.M. (1997) Efeito da inoculação de Acetobacter diazotrophicus em cana-de-açúcar (Saccharum spp) variedade SP701143, a partir de cultura de meristemas. In: XIX Congresso Brasileiro de Microbiologia, SBM, Rio de Janeiro, 215.

[37]   Verma, J.P., Yadav, J., Tiwari, K.N. and Kumar, A. (2013) Effect of Indigenous Mesorhizobium spp. and Plant Growth Promoting Rhizobacteria on Yields and Nutrients Uptake of Chickpea (Cicer aritenium L.) under Sustainable Agriculture. Ecological Engineering, 51, 282-286.

[38]   Saha, R., Saha, N., Donofrio, R.S. and Bestervelt, L.L. (2013) Microbial Siderophores: A Mini Review. Journal of Basic Microbiology, 53, 303-317.

[39]   Arencibia, A.D., Vinagre, F., Estevez, Y., Bernal, A., Perez, J., Cavalcanti, J., Santana, I. and Hemerly, A.S. (2006) Gluconacetobacter diazotrophicus Elicits a Sugarcane Defense Response against a Pathogenic Bacteria Xanthomonas albilineans. Plant Signaling & Behavior, 1, 265-273.

[40]   Rosenblueth, M. and Martínez-Romero, E. (2006) Bacterial Endophytes and Their Interactions with Hosts. Molecular Plant Microbe Interactions, 19, 827-837.

[41]   Yasuda, M., Isawa, T., Shinozaki, S., Minamisawa, K. and Nakashita, H. (2009) Effects of Colonization of a Bacterial Endophyte, Azospirillum sp. B510, on Disease Resistance in Rice. Bioscience Biotechnology and Biochemistry, 73, 2595-2599.

[42]   Oliveira, A.L.M., Canuto, E.L., Reis, V.M. and Baldani, J.I. (2003) Response of Micropropagated Sugarcane Varieties to Inoculation with Endophytic Diazotrophic Bacteria. Brazilian Journal of Microbiology, 34, 59-61.

[43]   Suman, A., Gaur, A., Shrivastava, A.K. and Yadav, R.L. (2005) Improving Sugarcane Growth and Nutrient Uptake by Inoculating Gluconacetobacter diazotrophicus. Plant Growth Regulation, 47, 155-162.

[44]   Reis, V., Lee, S. and Kennedy, C. (2007) Biological Nitrogen Fixation in Sugarcane. In: Emerich, C. and Newton W.E., Eds., Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations, Springer, Dordrecht, 213-232.

[45]   Carvalho, T.L.G., Ferreira, P.C.G. and Hemerly, A.S. (2011) Sugarcane Genetic Controls Involved in the Association with Beneficial Endophytic Nitrogen Fixing Bacteria. Tropical Plant Biology, 4, 31-41.