AiM  Vol.8 No.11 , November 2018
Escherichia coli Harbouring Resistance Genes, Virulence Genes and Integron 1 Isolated from Athi River in Kenya
Abstract: Rivers can act as reservoirs of highly resistant strains and facilitate the dissemination of resistance, virulence and integron 1 genes. A cross-sectional study was carried out where 318 water samples were collected (53 from each site) and from the samples, 318 E. coli isolates were analysed for resistance genes, virulence genes and integron 1 using Polymerase Chain Reaction. 22% of the isolates had blaTEM, 33% had blaCTX-M and 28% had blaCMY. Prevalence of typical Enteropathogenic E. coli strains (carrying both eae and bfp genes) was 5% while the prevalence of atypical Enteropathogenic E. coli (carying only eae) was 1.8%. The prevalence of Enteroaggregative E. coli carrying the aggr genes was 11%. The prevalence of Enterotoxigenic E. coli encoding only lt toxin was 16 (5%) and while those carrying only st toxin was 6.9%. The prevalence of Enteroinvasive E. coli strains encoding as IpaH was 5% while that of strains, adherent invasive E. coli, carrying adherent invasive gene inv was 8.7%. 36% isolates were positive for class 1 integrons which were mostly isolated near the sewage effluent from waste treatment plant. Anthropogenic activities and close proximity to sewage treatment plant were found to play a key role in pollution of water body and accumulation of resistance and virulence genes. These results suggest that waste treatment plant may act as reservoir of resistance, virulence and integron 1 genes and is a potential risk to human and animal health in the region.
Cite this paper: Wambugu, P. , Kiiru, J. and Matiru, V. (2018) Escherichia coli Harbouring Resistance Genes, Virulence Genes and Integron 1 Isolated from Athi River in Kenya. Advances in Microbiology, 8, 846-858. doi: 10.4236/aim.2018.811056.

[1]   Molloy, S.L., Whitman, R.L., Shively, D.A., Nevers, M.B., Schwab, D.J. and Rose, J.B. (2006) Modeling the Transport and Inactivation of E. coli and Enterococci in the Near-Shore Region of Lake Michigan. Environmental Science and Technology, 40, 5022-5028.

[2]   Hawkey, P.M., Jones, A.M., Birmingham, B., Strategic, M. and House, M. (2009) The Changing Epidemiology of Resistance. Antimicrobial Chemotherapy, 64, 3-10.

[3]   WHO (2006) Guidlines for the Safe Use of Waste Water, Excreta and Grey Water. Wastewater Use in Agriculture, Vol. 2.

[4]   Holt, K.E., Wertheim, H., Zadoks, R.N., Baker, S., Whitehouse, C.A. and Dance, D. (2015) Genomic Analysis of Diversity, Population Structure, Virulence, and Antimicrobial Resistance in Klebsiella pneumoniae, an Urgent Threat to Public Health. PNAS, 112, E3574-E3581.

[5]   Coutinho, F.H., Pinto, L.H., Vieira, R.P., Martins, O.B., Rhayd, G., Salloto, B. and Cardoso, A.M. (2013) Antibiotic Resistance in Aquatic Environments of Rio de Janeiro, Brazil. INTECH, 1-22.

[6]   Musyoki, A.M., Suleiman, M.A., Mbithi, J.N. and Maingi, J.M. (2013) Water-Borne Bacterial Pathogens in Surface Waters of Nairobi River and Health Implications to Communities Downstream Athi River. International Journal of Life Science and Pharma Research, 3, L-4-L-10.

[7]   Versalovic, J., Koeuth, T. and Lupski, J.R. (1991) Distribution of Repetitive DNA Sequences in Eubacteria and Application to Fingerprinting of Bacterial Genomes. Nucleic Acids Research, 19, 6823-6831.

[8]   Aranda, K.S., Fabbricotti, S.H., Fagundes-neto, U. and Scaletsky, I.A. (2007) Single Multiplex Assay to Identify Simultaneously Enteroinvasive and Shiga Toxin-Producing Escherichia coli Strains in Brazilian Children. FEMS Microbiology Letters, 267, 145-150.

[9]   Vidal, R. (2005) Single Multiplex PCR Assay to Identify Simultaneously the Six Categories of Diarrheagenic Escherichia coli Associated with Enteric Infections. Journal of Clinical Microbiology, 43, 5362-5365.

[10]   Naser, L.A., Mahdi, K.H. and Almazini, M.A. (2016) Determination the Effect of ST Enterotoxin Isolated from Enterotoxigenic Escherichia coli Strains on Colon Cancer from Diarrhea Patients in Basra Hospitals. International Journal of Innovative Research in Science, Engineering and Technology, 5, 2742-2756.

[11]   Beata, S.A., Michai, T., Franiczek, R.U.K., Anna, D.K., Rzeszutko, M. and Iwańczak, B. (2012) Invasive Properties, Adhesion Patterns and Phylogroup Profiles among Escherichia coli Strains Isolated from Children with Inflammatory Bowel Disease. Advances in Clinical and Experimental Medicine, 21, 591-599.

[12]   Wambugu, P., Habtu, M., Impwi, P., Matiru, V. and Kiiru, J. (2015) Antimicrobial Susceptibility Profiles among Escherichia coli Strains Isolated from Athi River Water in Machakos County, Kenya. Advances in Microbiology, 5, 711-719.

[13]   Knapp, C.W., Lima, L., Olivares-Rieumont, S., Bowen, E., Werner, D. and Graham, D.W. (2012) Seasonal Variations in Antibiotic Resistance Gene transport in the Almendares River, Havana, Cuba. Frontiers in Microbiology, 3, 396

[14]   Su, H., Ying, G., Tao, R., Zhang, R., Zhao, J. and Liu, Y. (2012) Class 1 and 2 Integrons, sul Resistance Genes and Antibiotic Resistance in Escherichia coli Isolated from Dongjiang River, South China. Environmental Pollution, 169, 42-49.

[15]   Zurfluh, K., Hächler, H., Nüesch-Inderbinen, M. and Stephan, R. (2013) Carbapenemase-Producing Enterobacteriaceae Isolates from Rivers and Lakes in Switzerland. Applied and Environmental Microbiology, 79, 3021-3026.

[16]   Shehani, T. and Lee, S.M. (2013) Isolation of Extended Spectrum β-Lactamase (ESBL) Producing Bacteria from Urban Surface Waters in Malaysia. Malaysian Journal of Medical Sciences, 20, 14-22.

[17]   Sang, W.K., Oundo, V. and Schnabel, D. (2012) Prevalence and Antibiotic Resistance of Bacterial Pathogens Isolated from Childhood Diarrhoea in Four Provinces of Kenya. Journal of Infection in Developing Countries, 6, 572-578.

[18]   Sang, W.K., Boga, H.I., Waiyaki, P.G., Schnabel, D., Wamae, N.C. and Kariuki, S.M. (2012) Prevalence and Genetic Characteristics of Shigatoxigenic Escherichia coli from Patients with Diarrhoea in Maasailand, Kenya. Journal of Infection in Developing Countries, 6, 102-108.

[19]   Ndlovu, T., Le Roux, M., Khan, W. and Khan, S. (2015) Co-Detection of Virulent Escherichia coli Genes in Surface Water Sources. PLoS ONE, 10, e0116808.

[20]   Hamelin, K., Bruant, G., El-shaarawi, A., Hill, S., Edge, T.A., Fairbrother, J. and Brousseau, R. (2007) Occurrence of Virulence and Antimicrobial Resistance Genes in Escherichia coli Isolates from Different Aquatic Ecosystems within the St. Clair River and Detroit River Areas. Applied and Environmental Microbiology, 73, 477-484.

[21]   Koczura, R., Mokracka, J., Jabłońska, L., Gozdecka, E., Kubek, M. and Kaznowski, A. (2012) Antimicrobial Resistance of Integron-Harboring Escherichia coli Isolates from Clinical Samples, Wastewater Treatment Plant and River Water. The Science of the Total Environment, 414, 680-685.

[22]   Kummerer, K. (2009) Chemosphere Antibiotics in the Aquatic Environment—A Review—Part I. Chemosphere, 75, 417-434.

[23]   Castillo, F.Y.R., González, F.J.A., Garneau, P., Díaz, F.M., Barrera, A.L.G., Harel, J. and De, I.N. (2013) Presence of Multi-Drug Resistant Pathogenic Escherichia coli in the San Pedro River Located in the State of Aguascalientes, Mexico. Frontiers in Microbiology, 4, 1-16.

[24]   Varghese, M. and Roymon, M.G. (2013) Studies on Antibiotic Resistance Profiles of Thermotolerant Escherichia coli and Multiple Antibiotic Resistance Index of Different Water Sources. Recent Research in Science and Technology, 5, 68-72.

[25]   Njugu, P.M. (2011) Antibiotic Susceptibility Patterns and Detection of Genes Responsible for the Resistance of Klebsiella Species and Escherichia coli. Thesis Copy from JKUAT Library.

[26]   Chen, B., Zheng, W., Yu, Y., Huang, W., Zheng, S., Zhang, Y. and Topp, E. (2011) Class 1 Integrons, Selected Virulence Genes, and Antibiotic Resistance in Escherichia coli Isolates from the Minjiang River, Fujian Province, China. Applied and Environmental Microbiology, 77, 148-155.