Back
 ENG  Vol.10 No.11 , November 2018
Methodology for Volumetric Measuring Transport of River Sand, in a Laboratory Channel with Mobile Bottom
Abstract: Most public universities in Latin America and Mexico lack laboratories for measuring sediment transport or to do academic activities. The Research Center of the engineering faculty of Chiapas state university (UNACH by its acronym in Spanish) designed a portable prismatic channel for teaching and researching the sediment transportation in rivers. This paper presents the method to measure river sand transportation in a laboratory channel with a mobile bottom and presents the results of twenty-seven experiments done in the portable channel, using nine different slope inclinations and 27 flow and water speed values. The three main results are the following: 1) The construction of the channel with variable slopes, to experiment and measure sediment transportation. 2) A method developed for measuring the volume of sediment in a laboratory. 3) In a channel with a bottom slope of 0.071, a water flow of 2 l/s and a water speed of 1.77 m/s, the volume of transported sediment was 0.015 m3; in a channel with a bottom slope of 0.44, a water flow of 2 l/s and a water speed of 0.788 m/s, the volume of transported sediment was 0.006 m3; in a channel with the bottom slope of 0.024, a water flow of 2 l/s and a water speed of 0.62 m/s, the transported sediment was 0 m3.
Cite this paper: Mundo-Molina, M. , Pérez-Díaz, J. and Hernández-Cruz, D. (2018) Methodology for Volumetric Measuring Transport of River Sand, in a Laboratory Channel with Mobile Bottom. Engineering, 10, 759-768. doi: 10.4236/eng.2018.1011053.
References

[1]   Mundo-Molina, M. (2018) Volumetric Measuring of Sediments in a Transportable Prismatic Channel. 6th International Symposium on Sediment Management, San Cristóbal de las Casas, Chiapas.

[2]   Mundo, M.M. (2014) Diseño y construcción de un canal económico en el laboratorio de hidráulica de la Facultad de Ingeniería de la UNACH. Congreso Latinoamericano de hidraulica, Santiago de Chile.

[3]   Lopardo, R. (1995) La formación del ingeniero hidráulico para el siglo XXI. Revista Ingeniería del Agua, 2, 67-76.
https://doi.org/10.4995/ia.1995.2688

[4]   Martín, J.P. (2003) Ingeniería de ríos. Ed. Alfaomega, México. D.F.

[5]   Ayala, L., Herrera, I., Cepeda, J. and Saldaña, A. (2018) Modelación numérica de la socavación local en pilas circulares con modelos lagrangianos. XXVIII Congreso Latinoamericano de Hidráulica, Buenos Aires, Argentina.

[6]   Spais, A., Reynares, M., Scacchi, G., Possi, M. and Schreider, M. (2018) El uso de geotubos como medida de protección de estribos de puentes. XXVIII Congreso Latinoamericano de Hidráulica, Buenos Aires, Argentina.

[7]   Cusipima, M., Kuroiwa, J. and Castro, L. (2018) Simulación numérica de la hidrodinámica y transporte de sedimentos en el modelo hidráulico del río Madre de Dios. XXVIII Congreso Latinoamericano de Hidráulica, Buenos Aires, Argentina.

[8]   Reyes, N., Kuroiwa, J. and Castro, L. (2018) Erosión aguas abajo de traviesas en tramos curvos: Resultados preliminares. XXVIII Congreso Latinoamericano de Hidráulica, Buenos Aires, Argentina.

[9]   Salinas, H., álvarez, A., Becerril, J. and García, J. (2018) Estimación de zonas de alto riesgo erosivo en ríos pequeños, utilizando un modelo hidráulico bidimensional. XXVIII Congreso Latinoamericano de Hidráulica, Buenos Aires, Argentina.

[10]   Maatooq, J., Omran, H. and Aliwe, H. (2016) Empirical Formula for Estimation the Sediment Load in Shat AL-Gharaf River. Basrah Journal for Engineering Sciences, 16, 38-41.

[11]   Maza, A.J.A. and García Flores, M. (1986) Distribuciones de los tamaños de los sedimentos del fondo en cauces naturales. Memorias del XII Congreso Latinoamericano de Hidráulica, 3, 104-109.

[12]   Maza, A.J. and García, F.M. (1996) Manual de Ingeniería de Ríos. Series del Instituto de Ingeniería. UNAM, México D.F.

[13]   Chow, V.T. (2004) Hidráulica de canales abiertos. Ed. Mc-Graw-Hill. Santa Fé de Bogotá, Colombia.

 
 
Top