[1] S. Devasia, E. Eleftheriou and S.O.R. Moheimani, “A Survey of Control Issues in Nanopositioning,” IEEE Trans- actions on Control Systems Technology, Vol. 15, No. 5, 2007, pp. 802-823. doi:10.1109/TCST.2007.903345
[2] D. Croft, G. Shed and S. Devasia, “Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application,” Journal of Dynamic Sys- tems, Measurement, and Control, Vol. 123, No. 1, 2001, pp. 35-43. doi:10.1115/1.1341197
[3] J. Y. Peng and X. B. Chen, “Hysteresis Models Based on a Novel Hysteresis Unit,” 2011, Unpublished.
[4] I. Mayergoyz, “Mathematical Models of Hysteresis,” Physical Review Letters, Vol. 56, No. 15, 1986, pp. 1518- 1521. doi:10.1103/PhysRevLett.56.1518
[5] P. Ge and M. Jouaneh, “Generalized Preisach Model for Hysteresis Nonlinearity of Piezoceramic Actuators,” Pre- cision engineering, Vol. 20, No. 2, 1997, pp. 99-111. doi:10.1016/S0141-6359(97)00014-7
[6] H. Hu and R. Ben-Mrad, “On the Classical Preisach Model for Hysteresis in Piezoceramic Actuators,” Mecha- tronics, Vol. 13, No. 2, 2002, pp. 85-94. doi:10.1016/S0957-4158(01)00043-5
[7] G. Song, J. Zhao, X. Zhou, and J. A. De Abreu-García, “Tracking Control of a Piezoceramic Actuator with Hysteresis Compensation Using Inverse Preisach Model,” IEEE/ASME Transactions on Mechatronics, Vol. 10, No. 2, 2005, pp. 198-209. doi:10.1109/TMECH.2005.844708
[8] X. Yang, W. Li, Y. Wang, and G. Ye, “Modeling Hystere- sis in Piezo Actuator Based on Neural Networks,” Lecture Notes in Computer Science, Vol. 5370, 2008, pp. 290-296. doi:10.1007/978-3-540-92137-0_32
[9] X. B. Chen, Q. Zhang, D. Kang and W. Zhang, “On the Dynamics of Piezoactuated Positioning Systems,” Review of Scientific Instruments, Vol. 79, No. 11, 2008, pp. 116101- 1 to 116101-3.