Back
 AS  Vol.9 No.10 , October 2018
Agroecosystems, Landscapes and Knowledge of Family Farmers from Aramaçá Island, Upper Solimões Region, Amazon
Abstract: The family farmer’s knowledge about floodplains agroecosystems dynamics is part of agrobiodiversity conservation cognitive strategies. This is because the conservation in floodplains is conditioned by the ecophysiological adaptation to the period and flood gradient of the agricultural lands and by the transformations promoted in the environment by the waters pulse. The aim of this study was to understand the cognitive strategies expressed in the organized meaning of agroecosystems by local knowledge, related to the geomorphological dynamics of the Aramaçá Island, Amazonas, Brazil. In this research, the Case Study and Ethnoecology were adopted as approach, taking the systemic complexity paradigm as a theoretical framework. To do so, it was necessary to establish a dialogue with the local knowledge through multitemporal analyses of satellite images, historical series of hydrological data, as well as cartographic documents of the locality. The floodplains amphibian mark, as a living organism in permanent autopoietic process, seems to be imprinted in the family farmer’s knowledge. In order to live in the floodplains and of floodplains, it is necessary, above all, to develop a cognitive ability capable of understanding not only the rivers action on the lands, but also that of the lands on the rivers as well. Therefore, the geomorphological dynamics in the spaces managed by the family farmers impose on them, risks and uncertainties, demanding from them strategies that allow knowing and dealing with this complexity.
Cite this paper: Martins, A. , Noda, S. , Noda, H. , Martins, L. and Brocki, E. (2018) Agroecosystems, Landscapes and Knowledge of Family Farmers from Aramaçá Island, Upper Solimões Region, Amazon. Agricultural Sciences, 9, 1369-1387. doi: 10.4236/as.2018.910095.
References

[1]   Emperaire, L. and Eloy, L. (2008) The City, a Focus of Agricultural Diversity in Rio Negro (Amazonas, Brazil)? Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 3, 195-211.
https://doi.org/10.1590/S1981-81222008000200005

[2]   Martins, P.S. (2005) Evolutionary Dynamics in Amazonian Caboclo ‘Roças’. Advanced Studies, 19, 209-220.

[3]   Noda, S.N., Martins, A.L.U., Noda, H., Silva, A.I.C. and Braga, M.D.S. (2012) Landscapes and Ethnoknowledge in Ticuna and Cocama Agriculture on the Upper Solimões River, Amazon. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 7, 397-416.
https://doi.org/10.1590/S1981-81222012000200006

[4]   Junk, W.J. (2000) Neotropical Floodplains: A Continental-Wide View. In: Junk, W.J., Ohly, J.J., Piedade, M.T.F. and Soares, M.G.M., Eds., The Central Amazon Floodplain: Actual Use and Options for Sustainable Management, Backhuys, Leiden, 5-26.

[5]   Wittmann, F., Junk, W.J. and Piedade, M.T.F. (2004) The Várzea Forests in Amazonia: Flooding and the Highly Dynamics Geomorphology Interact with Natural Forest Succession. Forest Ecology and Management, 196, 199-212.
https://doi.org/10.1016/j.foreco.2004.02.060

[6]   Wittmann, F., Schöngart, J., Montero, J.C., Motzer, T., Junk, W.J., Piedade, M.T.F., Queiroz, H.L. and Worbes, M. (2006) Tree Species Composition and Diversity Gradients in White-Water Forests across the Amazon Basin. Journal of Biogeography, 33, 1334-1347.
https://doi.org/10.1111/j.1365-2699.2006.01495.x

[7]   Tuan, Y. (2013) Space and Place: The Perspective of Experience. Eduel, Londrina.

[8]   Brazilian Institute of Geography and Statistics. Cities@. Regional Division-Cartograms.
http://www.ibge.gov.br/home/geociencias/geografia/default_div_int.shtm

[9]   Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. and Sparovek, G. (2014) Köppen’s Climate Classification Map for Brazil. Meteorologische Zeitschrift, 22, 711-728.
https://doi.org/10.1127/0941-2948/2013/0507

[10]   National Institute of Meteorology (2015) BDMET—Historical Data.
http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep

[11]   Yin, R.K. (2015) Case Study: Planning and Methods. Bookman, Porto Alegre.

[12]   Albuquerque, U.P., Lucena, R.F.P. and Alencar, N.L. (2010) Methods and Techniques for Collecting Ethnobiological Data. In: Albuquerque, U.P., Lucena, R.F.P. and Cunha, L.V.F.C., Eds., Methods and Techniques in Ethnobiological and Ethnoecological Research, NUPPEA, Recife, 41-64.

[13]   National Institute of Space Research. Geomorphometric Database of Brazil (TOPODATA). Paper Sheet 04S705.
http://www.webmapit.com.br/inpe/topodata

[14]   Pereira, H.S. (2007) Socio-Environmental Dynamics of the Solimões-Amazonas Floodplains. In: Fraxe, T.J.P., Pereira, H.S. and Witkoski, A.C., Orgs., Amazonian Riverside Localities: Ways of Life and Use of Natural Resources, EDUA, Manaus, 11-34.

[15]   Sternberg, H.O. (1998) Water and Man in Careiro Floodplain. Emílio Goeldi Paraense Museum, Belém.

[16]   Carneiro, D.S., Souza, J.C.R., Vicens, R.S. and Carvalho, J.A.L. (2009) Solimões River Morphodynamics and Social Implications: A Proposal of Environmental Education Supported by Geotechnologies and Traditional Knowledge. Brazilian Symposium on Remote Sensing, São José dos Campos, 2381-2387.
http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr@80/2008/11.18.01.39.59/doc/2381-2387.pdf

[17]   Kalliola, R., Jokinen, P. and Tuukki, E. (1999) Fluvial Dynamics and Sustainable Development in Upper Rio Amazonas, Peru. In: Padoch, C., Ayres, J.M., Pinedo-Vasquez, M. and Henderson, A., Eds, Várzea: Diversity, Development, and Conservation of Amazonia’s Whitewater Floodplains, NYBG, New York, 271-282.

[18]   Iriondo, M.H. (1982) Geomorphology of the Amazonian Plain. Symposium of the Quaternary in Brazil, Rio de Janeiro, 323-348.

[19]   Strasser, M.A. (2008) River Dunes in the Solimões-Amazonas River: Dynamics and Sediment Transport. 148 f. Doctoral Thesis, UFRJ, Rio de Janeiro.

[20]   Zeng, N., Yoon, J., Marengo, J.A., Subramaniam, A., Nobre, C.A., Mariotti, A. and Neelin, J.D. (2008) Causes and Impacts of the 2005 Amazon Drought. Environmental Research Letters, 3, Article ID: 014002.
https://doi.org/10.1088/1748-9326/3/1/014002

[21]   Renó, V.F. (2016) Amazonian Floodplains: Landscape Changes and Their Impacts on the Provision of Ecosystem Services and Well-Being of Riverine Localities. Doctoral Thesis, INPE, São José dos Campos.

[22]   Laques, A., Léna, P., Silva, A.I.C., Martins, A.L.U., Arvor, D., Dessay, N., Noda, H., Noda, S.N., Robert, P., Loireau, M. and Guillaumet, J. (2013) Public Policies and Effects on Resource Management Strategies: The Case of Upper Solimões, Amazonas, Brazil. In: Noda, H. et al., Orgs., Socioenvironmental Dynamics in Family Agriculture in the Amazon, Wega, Manaus, 7-32.

[23]   Bittencourt, M.M. and Amadio, S.A. (2007) Proposal for Rapid Identification of Hydrological Periods in Lowland Areas of the Solimões-Amazonas River near Manaus. Acta Amazonica, 37, 303-308.
https://doi.org/10.1590/S0044-59672007000200019

[24]   Tuan, Y. (2012) Topophilia: A Study of the Perception, Attitudes and Values of the Environment. Eduel, Londrina.

[25]   Bertrand, G. (2004) Landscape and Global Physical Geography: Methodological Draft. Revista Ra'e Ga, Curitiba, 8, 141-152.

[26]   Guillaumet, J., Laques, A., Léna, P. and Robert, P. (2009) La spatialisation de la biodiversité: Pour la gestion durable des territoires. (Collection Latitudes). 23. IRD éditions, Marseille.
https://doi.org/10.4000/books.irdeditions.1157

[27]   D’Angelo, S.A. (2009) Plant Colonization in Areas of Recent Sedimentation in the Floodplain of Central Amazonia. Masters Dissertation, National Institute of Amazonian Research, Manaus.

[28]   Parolin, P., Oliveira, A.C., Piedade, M.T.F., Wittmann, F. and Junk, W.J. (2002) Pioneer Trees in Amazonian Floodplains: Three Key Species form Monospecific Stands in Different Habitats. Folia Geobotanica, 37, 225-238.
https://doi.org/10.1007/BF02804233

[29]   Wittmann, F., Anhuf, D. and Junk, W.J. (2002) Tree Species Distribution and Community Structure of Central Amazonians Várzea Forests by Remote-Sensing Techniques. Journal of Tropical Ecology, 18, 805-820.
https://doi.org/10.1017/S0266467402002523

[30]   Ayres, J.M. (1995) The Forests of the Mamirauá Floodplain: Mid-River Solimões. CNPq Mamirauá Civil Society, Brasília, 1.

[31]   Kageyama, P. and Gandara, F.B. (2000) Recovery of “Matas Ciliares”. In: Rodrigues, R.R. and Leitão Filho, H.F., Eds., Riparian Forests: Conservation and Recovery. EDUSP/FAPESP, São Paulo, 249-270.

[32]   Conserva, A.S. (2007) Seed Germination, Emergence and Recruitment of Seedlings of Ten Arboreal Species of the Lowlands of the Amanã and Mamirauá Sustainable Development Reserves, Central Amazonia. Doctoral Thesis, National Institute of Amazonian Research, Manaus.

[33]   Noda, S.N., Noda, H. and Pereira, H.S. (2000) Family Farming Systems in the Floodplains of the State of Amazonas. In: Junk, W.J., Ohly, J.J., Piedade, M.T.F. and Soares, M.G.M., Eds., The Central Amazon Floodplain: Actual Use and Options for Sustainable Management, Backhuys Publishers, Leiden, 215-241.

[34]   Wittmann, F., Schöngart, J. and Junk, W.J. (2010) Phytogeography, Species Diversity, Community Structure and Dynamics of Central Amazonian Floodplain Forests. In: Junk, W.J., et al., Eds., Amazonian Floodplain Florests: Ecophysiology, Biodiversity and Sustainable Management (Ecological Studies). Springer Science/Business Media, Netherlands, 61-105.
https://doi.org/10.1007/978-90-481-8725-6_4

 
 
Top