[1] Khavroshkin, O.B. and Tsyplakov, V.V. (2013) Radioactivity of a Sample of Ore: Monitoring. Engineering Physics, No. 8, 53-62.
[2] Khavroshkin, O. and Tsyplakov, V. (2013) Sun, Earth, Radioactive Ore: Common Periodicity. The Natural Science (NS), 5, 1001-1005.
[3] Khavroshkin, O. and Tsyplakov, V. (2011) Radioactivity of the Nuclei in a Centrifugal Force Field. The Natural Science (NS), 3, 733-737.
[4] Khavroshkin, O.B. and Tsyplakov, V.V. (2013) Natural Radioactivity as an Open System. Engineering Physics, No. 12.
[5] Starodubov, A.V., Khavroshkin, O.B. and Tsyplakov, V.V. (2014) From Periodicity of Radioactivity to Cosmic and Metaphysical Oscillations. Metaphysics, No. 1, 137-149.
[6] Khavroshkin, O.B. and Tsyplakov, V.V. (2014) Hydrogen Maser: Solar Periodicity. Engineering Physics, No. 3, 25-31.
[7] Khavroshkin, O.B. and Tsyplakov, V.V. (2014) Atomic-Molecular Metastable Media and Solar Neutrinos. Engineering Physics, No. 6, 40-47.
[8] Rukhadze, A.A., Khavroshkin, O.B. and Tsyplakov, V.V. (2015) Periodicity of Natural Radioactivity. Engineering Physics, No. 6, 26-36.
[9] Khavroshkin, O.B. and Tsyplakov, V.V. (2015) Modulated Neutrino Fluxes: Astrophysical and Geophysical Periodicity. Engineering Physics, No. 10, 27-47.
[10] Khavroshkin, O. and Tsyplakov, V. (2016) The Radioactivity of Nuclei & Solar Oscillations: New Experiments. NS, 8, 20-32.
[11] Tarasov, N.T., Tarasova, N.V., Khavroshkin, O.B. and Tsyplakov, V.V. (2016) Flash of the Top SN1987A: Seismic Response. Engineering Physics, No. 6, 82-93.
[12] Karagioz, O.V., Izmailov, V.P., Khavroshkin, O.B. and Tsyplakov, V.V. (2016) Kavvendish’s Terrestrial Weights and Cern’s Hadron Collaider: Different Destinies and Results. Engineering Physics, No. 4, 3-8.
[13] Khavroshkin, O.B. and Tsyplakov, V.V. (2016) Anomalous Neutrino Radioisotopic (ANRI) Absorption and Nuclear Re-actor. Engineering Physics, No. 10, 3-8.
[14] Khavroshkin, O.B. and Tsyplakov, V.V. (2017) Solar Neutrino, Monopol, Dion, Axion: Search Experiments. Applied Physics and Mathematics, No. 2, 3-10.
[15] Khavroshkin, O.B. and Tsyplakov, V.V. (2016) Grav-itational Wave Experiment: Geophysical and Astrophysical Components. Engineering Physics, No. 8, 56-63.
[16] Nikolayev, A.V., Khavroshkin, O.B. and Tsyplakov, V.V. (2016) Structure of Astrophysical Components of Seismic Emissions and Noise. Engineering Physics, 9, 69-73.
[17] Khavroshkin, O.B. and Tsyplakov, V.V. (2018) Devices for Advanced Physics Research. Invention Journal of Research Technology in Engineering & Management, 2, 59-63.
[18] Khavroshkin, O.B. and Tsyplakov, V.V. (2017) Neutrinos: Experiments, New Results. Palmarium Academic Publishing, 265 p.
[19] Khavroshkin, O.B. and Tsyplakov, V.V. (2017) Anomalous Neutrino Radioisotope (ANRI) Absorption and Background Antineutrinos of a Water-Water Nuclear Reactor. SciFed Journal of Nuclear Science, 1, 1.
[20] Khavroshkin, O.B. and Tsyplakov, V.V. (2017) Cavendish Torsion Balance and Hadron Collider at the Cern: Different Fates and Results. SciFed Journal of Nuclear Science.
[21] Khavroshkin, O.B. and Tsyplakov, V.V. (2017) Yellowstone’s Volcano and Sun: Fragments Selected Works. Journal of Geology and Geoscience, 1, 1-5.
[22] Rukhadze, A.A., Khavroshkin, O.B. and Tsyplakov, V.V. (2017) Graviton and Neutrino: Modulated Streams or Waves of the Envelope. Engineering Physics, No. 10, 71-85.
[23] Khavroshkin, O.B. and Tsyplakov, V.V. (2017) Temperature Fields of Radioactive Substances: Time Variations and Applications. Engineering Physics, No. 7, 17-32.
[24] Khavroshkin, O.B. and Tsyplakov, V.V. (2018) Devices for Advanced Physics Research. Invention Journal of Research Technology in Engineering & Management, 2, 59-63.
[25] Baurov, Y.A., Sobolev, Y.G. and Ryabov, Y.V. (2014) New Force, Global Anisotropy and the Changes in b-Decay Rate of Radioactive Elements. American Journal of Astronomy and Astrophysics, 2, 8-19.
[26] Baurov, Yu.A. (2000) On the Structure of the Physical Vacuum and a New Interaction in Nature (Theory, Experiment and Applications). Nova Science, New York.
[27] Parhomov, A.G. (2014) Periodic and Sporadic Changes in the Rate of Beta Decays, Observed during Long-Term Observations. Metaphysics, 1, 124-136.
[28] Jenkins, J.H., et al. (2012) Additional Experimental Evidence for a Solar Influence on Nuclear Decay Rates.
[29] Lobashov, V.M. (2003) Measurement of the Mass of Neutrinos in Beta-Decay of Tritium. Vestnik, 73, 14-27.
[30] Baurov, Yu.A., Sobolev, Yu.G., Kushniruk, V.F., et al. (2000) Experimental Investigations of Changes in Velocity in the Rate of Beta Decay of Radioactive Elements. Physical Physics of Russia, No. 1, 1-7.
[31] Baurov, Y.A., Konradov, A.A., Kushniruk, V.F., et al. (2001) Experimental Investigation of Changes in the Beta-Decay Rate of 60Co and 137Cs. Modern Physics Letters A, 16, 2081-2101.
[32] Falkenberg, E.D. (2001) Radioactive Decay Caused by Neutrinos? Aperion, 8, 2081-2101.
[33] Fischbach, E., Buncher, J.B., Gruenwald, J.T., et al. (2009) Time Dependent Nuclear Decay Parameters: New Evidence for New Forces? Space Science Reviews, 145, 285-335.
[34] Iben, I. Jr. and Mahaffy, J. (1976) On the Sun’s Acoustical Spectrum. Astrophysical Journal, 209, L39-L43.
https://doi.org/10.1086/182262
[35] Dodonov, V.V., Klimov, A.B. and Man’ko, V.L. (1996) Low Energy Wave Packet Tun-neling from a Parabolic Potential Well through a High Potential Barrier. Physics Letters A, 41-48.
[36] Sturrock, P.A., Steinitz, G. and Fiscbach, E. (2018) Analysis of Gamma Radiation from a Radon Source. II: Indications of Influences of Both Solar and Cosmic Neutrinos on Beta Decays. Astroparticle Physics, 100, 1-12.
https://doi.org/10.1016/j.astropartphys.2018.02.003