Prey Predator Fishery Model with Stage Structure in Two Patchy Marine Aquatic Environment

References

[1] F. Brauer and A. C. Soudack, “Stability Regions and Transition Phenomena for Harvested Predator-Prey Systems,” Journal of Mathematical Biology, Vol. 7, No. 4, 1979, pp. 319-337. doi:10.1007/BF00275152

[2] F. Brauer and A. C. Soudack, “Stability Regions in Predator-Prey Systems with Constant-Rate Prey Harvesting,” Journal of Mathematical Biology, Vol. 8, No. 1, 1979, pp. 55-71. doi:10.1007/BF00280586

[3] G. Dai and M. Tang, “Coexistence Region and Global Dynamics of a Harvested Predator-Prey System,” SIAM: SIAM Journal on Applied Mathematics, Vol. 58, No. 1, 1998, pp.193-210. doi:10.1137/S0036139994275799

[4] M. R. Myerscough, B. E. Gray, W. L. Hograth and J. Norbury, “An Analysis of an Ordinary Differential Equation Model for a Two-Species Predator-Prey System with Harvesting and Stocking,” Journal of Mathematical Biology, Vol. 30, 1992, pp. 389-401.

[5] K. S. Chaudhuri and S. S. Ray, “On the Combined Harvesting of a Prey-Predator System,” Journal of Biological Systems, Vol. 4, No. 3, 1996, pp. 373-389.
doi:10.1142/S0218339096000259

[6] A. W. Leung, “Optimal Harvesting Co-Efficient Control of Steady State Prey-Predator Diffusive Volterra-Lotka Systems,” Applied Mathematics & Optimization, Vol. 31, No. 2, 1995, pp 219-241. doi:10.1007/BF01182789

[7] C. W. Clark, “Mathemalical Bioeconomics: The Optimal Management of Renewable Resources,” John Wiley and Sons, New York, 1979.

[8] S. A. Levin, T. G. Hallam and J. L. Gross, “Applied Mathematical Ecology,” Springer-Verlag, Berlin, 1989.

[9] W. G. Aiello and H. I. Freedman, “A Time Delay Model of Single Species Growth with Stage Structure,” Mathematical Biosciences, Vol. 101, No. 2, 1990, pp. 139-153.
doi:10.1016/0025-5564(90)90019-U

[10] H. I. Freedman and K. Gopalsammy, “Global Stability in Time-Delayed Single Species Dynamics,” Bulletin of Mathematical Biology, Vol. 48, No. 5-6, 1986, pp. 485-492.

[11] G. Rosen, “Time Delays Produced by Essential Nonlinearity in Population Growth Models,” Bulletin of Mathematical Biology, Vol. 49, No. 2, 1987, pp. 253-255.

[12] M. E. Fisher and B. S. Goh, “Stability Results for Delayed Recruitment Models in Population Dynamics,” Journal of Mathematical Biology, Vol. 19, No. 1, 1984, pp. 147-156. doi:10.1007/BF00275937

[13] M. Mesterton-Gibbons, “On the Optimal Policy for the Combined Harvesting of Predator and Prey,” Natural Resource Modeling, Vol. 3, 1988, pp. 63-90.

[14] C. W. Clark, “Mathematical Bioeconomics: The Optimal Management of Renewable Resources,” Wiley, New York, 1976.

[15] K. S. Chaudhuri, “A Bio Economic Model of Harvesting of a Multi Species Fishery,” Ecological Modelling, Vol. 32, No. 4, 1986, pp. 267-279.
doi:10.1016/0304-3800(86)90091-8

[16] D. L. Ragozin and G. Brown, “Harvest Policies and Non Market Valuation in a Predator Prey System,” Journal of Environmental Economics and Management, Vol. 12, No. 2, 1985, pp. 155-168. doi:10.1016/0095-0696(85)90025-7

[17] A. Hastings, “Global Stability of Two Species Systems,” Journal of Mathematical Biology, Vol. 5, 1978, pp.399-403.

[18] X.-Z. He, “Stability and Delays in a Predator-Prey System,” Journal of Mathematical Analysis and Applications, Vol. 198, No. 2, 1996, pp. 355-370.
doi:10.1006/jmaa.1996.0087

[19] B. S. Goh, “Global Stability in Two Species Interactions,” Journal of Mathematical Biology, Vol. 3, No. 3-4, 1976, pp. 313-318. doi:10.1007/BF00275063

[20] W. G. Aiello and H. I. Freedman, “A Time Delay Model of Single Species Growth with Stage Structure,” Mathematical Biosciences, Vol. 101, No. 2, pp. 139-153.
doi:10.1016/0025-5564(90)90019-U

[21] W. G. Aiello, H. I. Freedman and J. Wu, “Analysis of a Model Representing Stage Structured Population Growth with State-Dependent Time Delay,” SIAM: SIAM Journal on Applied Mathematics, Vol. 52, No. 3, 1992, pp. 855-869.

[22] T. K. Kar and M. Swarnakamal, “Influence of Prey Reserve in a Prey-Predator Fishery,” Non-Linear Analysis, Vol. 65, No. 9, 2006, pp.1725-1735.

[23] W. Wang and L. Chen, “Optimal Harvesting Policy for Single Population with Periodic Coefficients,” Mathematical Biosciences, Vol. 152, No. 2, 1998, pp. 165-177.
doi:10.1016/S0025-5564(98)10024-X

[24] R. Zhang, J. F. Sun and H. X. Yang, “Analysis of a Prey-Predator Fishery Model with Prey Reserve,” Applied Mathematical Sciences, Vol. 50, No. 1, 2007, pp. 2481-2492.

[25] W. D. Wang, Y. Takeeuchi,Y. Saito and S. Nakaoka, “Prey-Predator System with Parental Care for Predators,” Journal of Theoritical Biology, Vol. 241, No. 3, 2005, pp. 451-458. doi:10.1016/j.jtbi.2005.12.008

[26] K. Das, N. H. Gazi, “Structural Stability Analysis of an Algal Bloom Mathematical Model in Trophic Interaction,” International Journal of Non-linear Ananlysis: Real World Applications, Vol. 11, No. 4, 2010, pp. 2191-2206.

[27] N. H. Gazi and K. Das, “Control of Parameters of a Delayed-Diffusive Autotroph-Herbivore System,” International Journal of Biological System, Vol. 18, No. 2, 2010, pp. 509-529.