[1] Lokanadham, B., Gupta, K. and Nikam, V. (2012) Characterization of Spatial and Temporal Distribution of Monsoon Rainfall over Mumbai. ISH Journal of Hydraulic Engineering, 15, 69-80.
https://doi.org/10.1080/09715010.2009.10514941
[2] Brown, B.G., Katz, R.W. and Murphy, A.H. (1984) Statistical Analysis of Climatological Data to Characterize Erosion Potential: 4.Freezing Events in Eastern Oregon/Washington. Oregon Agricultural Experiment Station Spec. Rep. No. 689, Oregon State University.
[3] Diodato, N. and Bellocchi, G. (2007) Estimating Monthly (R)USLE Climate Input in a Mediterranean Region Using Limited Data. Journal of Hydrology, 345, 224-236.
https://doi.org/10.1016/j.jhydrol.2007.08.008
[4] Haile, A.T., Rientjes, T.H.M., Habib, E., Jetten, V. and Gebremichael, M. (2011) Rain Event Properties at the Source of the Blue Nile River. Hydrology and Earth System Sciences, 15, 1023-1034.
https://doi.org/10.5194/hess-15-1023-2011
[5] Larsen, M.L. and Teves, J.B. (2015) Identifying Individual Rain Events with a Dense Disdrometer Network. Advances in Meteorology, 2015, Article ID: 582782.
https://doi.org/10.1155/2015/582782
[6] Dunkerley, D. (2008) Rain Event Properties in Nature and Rainfall Simulation Experiments: A Comparative Review with Recommendations for Increasingly Systematic Study and Reporting. Hydrological Processes, 22, 4415-4435.
https://doi.org/10.1002/hyp.7045
[7] Adams, B.J. and Papa, F. (2000) Urban Stormwater Management Planning with Analytical Probabilistic Models. John Wiley & Sons, New York.
[8] Nojumuddin, N.S., Yusof, F. and Yusop, Z. (2018) Determination of Minimum Inter-Event Time for Storm Characterisation in Johor, Malaysia. Journal of Flood Risk Management, 11, S687-S699.
https://doi.org/10.1111/jfr3.12242
[9] Medina-Cobo, M.T., Garcia-Marin, A.P., Estevez, J. and Ayuso-Munoz, J.L. (2016) The Identification of an Appropriate Minimum Inter-Event Time (MIT) Based on the Multifractal Characterization of Rainfall Data Series. Hydrological Processes, 30, 3507-3517.
https://doi.org/10.1002/hyp.10875
[10] Hanel, M. and Máca, P. (2014) Spatial Variability and Interdependence of Rain Event Characteristics in the Czech Republic. Hydrological Processes, 28, 2929-2944.
[11] Joo, J., Lee, J., Kim, J.H., Jun, H. and Jo, D. (2014) Inter-Event Time Definition Setting Procedure for Urban Drainage Systems. Water, 6, 45-58.
https://doi.org/10.3390/w6010045
[12] Balistrocchi, M. and Bacchi, B. (2011) Modelling the Statistical Dependence of Rainfall Event Variables by a Trivariate Copula Function. Hydrology and Earth System Sciences Discussions, 8, 429-481.
https://doi.org/10.5194/hessd-8-429-2011
[13] Gyasi-Agyei, Y. and Melching, C.S. (2012) Modelling the Dependence and Internal Structure of Storm Events for Continuous Rainfall Simulation. Journal of Hydrology, 464, 249-261.
https://doi.org/10.1016/j.jhydrol.2012.07.014
[14] Shamsudin, S., Dan’azumi, S. and Aris, A. (2010) Effect of Storm Separation Time on a Rainfall Characteristics—A Case Study of Johor, Malaysia. European Journal of Scientific Research, 45, 162-167.
[15] Chin, R.J., Lai, S.H., Chang, K.B., Othman, F. and Jaafar, W.Z.W. (2016) Analysis of Rainfall Events over Peninsular Malaysia. Weather, 71, 118-123.
https://doi.org/10.1002/wea.2723
[16] Dunkerley, D. (2008) Identifying Individual Rain Events from Pluviograph Records: A Review with Analysis of Data from an Australian Dryland Site. Hydrological Processes, 22, 5024-5036.
https://doi.org/10.1002/hyp.7122
[17] Saikranthi, K., Rao, T.N., Rajeevan, M. and Bhaskara Rao, S.V. (2013) Identification and Validation of Homogeneous Rainfall Zones in India Using Correlation Analysis. Journal of Hydrometeorology, 14, 304-317.
https://doi.org/10.1175/JHM-D-12-071.1
[18] Sinha, P., Mohanty, U.C., Kar, S.C., Dash, S.K., Robertson, A.W. and Tippett, M.K. (2013) Seasonal Prediction of the Indian Summer Monsoon Rainfall Using Canonical Correlation Analysis of the NCMRWF Global Model Products. International Journal of Climatology, 33, 1601-1614.
https://doi.org/10.1002/joc.3536
[19] Nair, A., Mohanty, U.C. and Acharya, N. (2013) Monthly Prediction of Rainfall over India and Its Homogeneous Zones during Monsoon Season: A Supervised Principal Component Regression Approach on General Circulation Model Products. Theoretical and Applied Climatology, 111, 327-339.
https://doi.org/10.1007/s00704-012-0660-8
[20] Ahuja, S. and Dhanya, C.T. (2012) Regionalization of Rainfall Using RCDA Cluster Ensemble Algorithm in India. Journal of Software Engineering and Applications, 5, 568.
https://doi.org/10.4236/jsea.2012.58065
[21] Bharath, R. and Srinivas, V.V. (2015) Regionalization of Extreme Rainfall in India. International Journal of Climatology, 35, 1142-1156.
https://doi.org/10.1002/joc.4044
[22] Saha, M., Mitra, P. and Nanjundiah, R.S. (2017) Deep Learning for Predicting the Monsoon over the Homogeneous Region of India. Journal of Earth System Science, 126, 54.
https://doi.org/10.1007/s12040-017-0838-7
[23] Kakade, S.B. and Kulkarni, A. (2017) Seasonal Prediction of Summer Monsoon Rainfall over Cluster Regions of India. Journal of Earth System Science, 126, 34.
https://doi.org/10.1007/s12040-017-0811-5
[24] Dilmi, M.D., Mallet, C., Barthès, L. and Chazottes, A. (2017) Data-Driven Clustering of Rain Events: Microphysics Information Derived from Macro-Scale Observations. Atmospheric Measurement Techniques, 10, 1557-1574.
https://doi.org/10.5194/amt-10-1557-2017
[25] Manaan, A., Chaudhary, S., Dhanya, C.T. and Swamy, A.K. (2017) Regionalization of Rainfall Characteristics in India Incorporating Climatic Variables and Using Self-Organizing Maps. ISH Journal of Hydraulic Engineering, 24, 147-156.
[26] Sherly, M.A., Karmakar, S., Chan, T. and Rau, C. (2015) Design Rainfall Framework Using Multivariate Parametric-Nonparametric Approach. Journal of Hydrologic Engineering, 21, Article ID: 04015049.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001256
[27] Sen, S., Vittal, H., Singh, T., Singh, J. and Karmakar, S. (2013) At-Site Design Rainfall Estimation with a Diagnostic Check for Nonstationarity: An Application to Mumbai Rainfall Datasets. Proceedings of Hydro, Madras, 4-6 December 2013.
[28] Nayak, M.A. and Ghosh, S. (2013) Prediction of Extreme Rainfall Event Using Weather Pattern Recognition and Support Vector Machine Classifier. Theoretical and Applied Climatology, 114, 583-603.
https://doi.org/10.1007/s00704-013-0867-3
[29] Singh, J., Sekharan, S., Karmakar, S., Ghosh, S., Zope, P.E. and Eldho, T.I. (2017) Spatio-Temporal Analysis of Sub-Hourly Rainfall over Mumbai, India: Is Statistical Forecasting Futile? Journal of Earth System Science, 126, 38.
https://doi.org/10.1007/s12040-017-0817-z
[30] Estevez, J., Gavilan, P., García-Marin, A.P. and Zardi, D. (2015) Detection of Spurious Precipitation Signals from Automatic Weather Stations in Irrigated Areas. International Journal of Climatology, 35, 1556-1568.
https://doi.org/10.1002/joc.4076
[31] Restrepo-Posada, P.J. and Eagleson, P.S. (1982) Identification of Independent Rainstorms. Journal of Hydrology, 55, 303-319.
https://doi.org/10.1016/0022-1694(82)90136-6
[32] Lowe, R., Madsen, H. and McSharry, P. (2016) Objective Classification of Rainfall in Northern Europe for the Online Operation of Urban Water Systems Based on Clustering Techniques. Water, 8, 87.
https://doi.org/10.3390/w8030087
[33] He, Z., Zhao, W., Liu, H. and Chang, X. (2012) The Response of Soil Moisture to Rainfall Event Size in Subalpine Grassland and Meadows in a Semi-Arid Mountain Range: A Case Study in Northwestern China’s Qilian Mountains. Journal of Hydrology, 420, 183-190.
https://doi.org/10.1016/j.jhydrol.2011.11.056
[34] Huang, J., Zhang, J., Zhang, Z. and Xu, C.Y. (2012) Spatial and Temporal Variations in Rainfall Erosivity during 1960-2005 in the Yangtze River Basin. Stochastic Environmental Research and Risk Assessment, 27, 337-351.
https://doi.org/10.1007/s00477-012-0607-8
[35] Meusburger, K., Steel, A., Panagos, P., Montanarella, L. and Alewell, C. (2012) Spatial and Temporal Variability of Rainfall Erosivity Factor for Switzerland. Hydrology and Earth System Sciences, 16, 167-177.
https://doi.org/10.5194/hess-16-167-2012
[36] Ran, Q., Su, D., Li, P. and He, Z. (2012) Experimental Study of the Impact of Rainfall Characteristics on Runoff Generation and Soil Erosion. Journal of Hydrology, 424-425, 99-111.
https://doi.org/10.1016/j.jhydrol.2011.12.035
[37] Kohonen, T. (1995) Self-Organizing Maps. Third Edition, Springer, Berlin.
https://doi.org/10.1007/978-3-642-97610-0
[38] Kohonen, T. (2013) Essentials of the Self-Organizing Map. Neural Networks, 37, 52-65.
https://doi.org/10.1016/j.neunet.2012.09.018
[39] Vesanto, J., Himberg, J., Alhoniemi, E. and Parhankagas, J. (2000) SOM Toolbox for Matlab 5, Report A57.
http://www.cis.hut.fi/projects/somtoolbox/
[40] Fincke, T., Lobo, V. and Bação, F. (2018) Visualizing Self-Organizing Maps with GIS. GI Days.
https://www.researchgate.net/profile/Fernando_Bacao/publication/228660313_Visualizing_self-organizing_maps_with_GIS/links/0fcfd50a2730443654000000.pdf
[41] Lourenço, F.C., Lobo, V.S. and Bação, F.L. (2014) Exploratory Geospatial Data Analysis Using Self-Organizing Maps. Case Study of Portuguese Mainland Regions.
https://www.researchgate.net/publication/237226357
[42] Polzlbauer, G., Dittenbach, M. and Rauber, A. (2006) Advanced Visualization of Self-Organizing Maps with Vector Fields. Neural Networks, 19, 911-922.
https://doi.org/10.1016/j.neunet.2006.05.013
[43] Tan, P.N., Steinbach, M. and Kumar, V. (2006) Introduction to Data Mining. Pearson Education, Addison Wesley, Boston, 769.
[44] Paul, S., Ghosh, S., Mathew, M., Devanand, A., Karmakar, S. and Niyogi, D. (2018) Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall Due to Urbanization. Scientific Reports, 8, Article No. 3918.
https://doi.org/10.1038/s41598-018-22322-9