OJPC  Vol.1 No.3 , November 2011
Atomistic Simulations of Formation of Elementary Zr-I Systems
Abstract: We report results of simulations on the formation of simple zirconium iodide molecules. Previous work by Wimmer et al. [1] explored the relationship between iodine and a zirconium surface. We investigate the reaction schemes through atomistic simulations to better understand the nature of Zr-I interactions through isolated molecules. The computed energy values of varying Zr-I systems suggests a strong binding mechanism between zirconium and iodine, and offer predictions of likely reaction products. The computed results predict condensation of volatile ZrI4 with ZrI2 to form Zr2I6
Cite this paper: nullM. Rossi and C. Taylor, "Atomistic Simulations of Formation of Elementary Zr-I Systems," Open Journal of Physical Chemistry, Vol. 1 No. 3, 2011, pp. 104-108. doi: 10.4236/ojpc.2011.13014.

[1]   [1] E. Wimmer, R. Najafabadi, et al., “Ab Initio Calculations for Industrial Materials Engineering: Successes and Cha- llenges,” Journal of Physics: Condensed Matter, Vol. 22, No. 38, 2010, p. 384215. doi:10.1088/0953-8984/22/38/384215

[2]   S. A. Nikulin and A. B. Rozhnov, “Corrosion Cracking of Zirconium Cladding Tubes (A Review). I. Methods of Study and Mechanisms of Fracture,” Metal Science and Heat Treatment, Vol. 47, No. 1-2, 2005, pp. 71-79. doi:10.1007/s11041-005-0034-2

[3]   S. B. Goryachev, A. R. Gritsuk, et al., “Iodine Induced SCC of Zr Alloys at Constant Strain Rate,” Journal of Nuclear Materials, Vol. 199, No. 1, 1992, pp. 50-60. doi:10.1016/0022-3115(92)90439-R

[4]   V. V. Likhanskii and L. V. Matweev, “The Development of the Crack Growth Model in Zirconium Claddings in Iodine Environment,” Nuclear Engineering and Design, Vol. 213, No. 2-3, 2002. pp. 133-140. doi:10.1016/S0029-5493(01)00516-7

[5]   A. Serres, L. Fournier, et al., “The Effect of Iodine Content and Specimen Orientation on Stress Corrosion Crack Growth Rate in Zircaloy-4,” Corrosion Science, Vol. 52, No. 6, 2010, pp. 2001-2009. doi:10.1016/j.corsci.2010.02.008

[6]   I. Schuster and C. Lemaignan, “Influence of Texture on Iodine-Induced Stress Corrosion Cracking of Zircaloy-4 Cladding Tubes,” Journal of Nuclear Materials, Vol. 189, No. 2, 1992, pp. 157-166. doi:10.1016/0022-3115(92)90528-S

[7]   P. P. S. Sidky, “Iodine Stress Corrosion Cracking of Zircaloy Reactor Cladding: Iodine Chemistry (a Re- view),” Journal of Nuclear Materials, Vol. 256, No. 1, 1998, pp. 1-17. doi:10.1016/S0022-3115(98)00044-0

[8]   F. Lemoine, “High Burnup Fuel Behavior Related to Fission Gas Effects under Reactivity Initiated Accidents (RIA) Conditions,” Journal of Nuclear Materials, Vol. 248, No. 1, 1997, pp. 238-248. doi:10.1016/S0022-3115(97)00157-8

[9]   P. P. Rudling, R. Adamson, et al., “High Burnup Fuel Issues,” Nuclear Engineering Technology, Vol. 40, 2008, 1-8.

[10]   K. D. Sinel’nikov, F. I. Busol and G. I. Stepanova, “Problem of the Iodine Method of Purification of Zir- conium,” Atomic Energy, Vol. 4, 1958. pp. 221-227.

[11]   S. Y. Park, et al., “Crack Initiation and Propagation Behavior of Zirconium Cladding under an Environment of Iodine-Induced Stress Corrosion,” Metals and Ma- terials International, Vol. 13, No. 2, 2007, pp. 155-163. doi:10.1007/BF03027567

[12]   D. H. Guthrie and J. D. Corbett, “Synthesis and Structure of an Infinite-Chain Form of Zr I2 (alpha),” JSSC, Vol. 37, 1981, pp. 256-263.

[13]   A. Lachgar, D. S. Dudis and J. D. Corbett, “Revision of the Structure of Zirconium Triiodide. The Presence of Metal Dimers,” Inorganic Chemistry, Vol. 29, No. 12, 1990, pp. 2242-2246. doi:10.1021/ic00337a013

[14]   B. Krebs, G. Henkel and M. Dartmann, “Kristallstruktur von Zirkoniumtetrajodid Zr I4. Ein Neuer A B4― Strukturtypp,” Acta Crystallographica Section B, Vol. 35, 1979, pp. 274-278. doi:10.1107/S0567740879003344

[15]   S. B. Farina, G. S. Duffo and J. R. Galvele, “Localized Corrosion of Zirconium and Zircaloy-4 in Iodine Alco- holic Solutions,” LAAR, Vol. 32, 2002, pp. 295-298.

[16]   S. B. Farina, G. S. Duffo and J. R. Galvele, “Stress Corrosion Cracking of Zircaloy-4 in Halide Solutions. Effect of Temperature,” Materials Research, Vol. 5, No. 2, 2002, pp. 107-112. doi:10.1590/S1516-14392002000200004

[17]   P. P. Jacques, F. Lefebvre and C. Lemaignan, “Defor- mation-Corrosion Interactions for Zr Alloys during I- SCC Crack Initiation. Part I: Chemical Contributions,” Journal of Nuclear Materials, Vol. 264, No. 3, 1999, pp. 239-248. doi:10.1016/S0022-3115(98)00501-7

[18]   M. W. Schmidt, K. K. Baldridge, et al., “General Atomic and Molecular Electronic Structure System,” Journal of Computational Chemistry, Vol. 14, No. 11, 1993, pp. 1347-1363. doi:10.1002/jcc.540141112

[19]   M. S. Gordon and M. W. Schmidt, “Advances in Elec- tronic Structure Theory: GAMESS a Decade Later,” In: C. E. Dykstra, G. Frenking, et al., Eds., Theory and App- lications of Computational Chemistry, the First Forty Years, Elsevier, Amsterdam, 2005, pp. 1347-1363. doi:10.1016/B978-044451719-7/50084-6

[20]   A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics, Vol. 98, 1993, pp. 5648-5642. doi:10.1063/1.464913

[21]   P. P. J. Stephens, F. J. Devlin, et al., “Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,” The Journal of Physical Chemistry, Vol. 98, No. 45, 1994, pp. 11623- 11627. doi:10.1021/j100096a001

[22]   R. H. Hertwig and W. Koch, “On the Parameterization of the Local Correlation Functional. What Is Becke- 3-LYP?” Chemical Physics Letters, Vol. 268, No. 5-6, 1997, pp. 345-351. doi:10.1016/S0009-2614(97)00207-8

[23]   W. J. Stevens, H. Basch and M. Krauss, “Compact Effective Potentials and Efficient Shared-Exponent Basis Sets for the First- and Second-Row Atoms,” Journal of Chemical Physics, Vol. 81, No. 12, 1984, pp. 6026-6033. doi:10.1063/1.447604

[24]   W. J. Stevens, M. Krauss, H. Basch and P. P. G. Jasien, “Relavtivistic Compact Effective Potentials and Efficient, Shared-Exponent Basis-Sets for the 3rd-Row, 4th-Row and 5th-Row Atoms,” Canadian Journal of Chemistry, Vol. 70, No .2, 1992, pp. 612-630. doi:10.1139/v92-085

[25]   T. R. Cundari and W. J. Stevens, “Effective Core Potential Methods for the Lanthanides,” Journal of Chemical Physics, Vol. 98, No. 7, 1993, pp. 5555-5565. doi:10.1063/1.464902

[26]   F. I. Busol, “Kinetics of the Reduction of ZrI4 Vapors by Metallic Zirconium,” Russian Journal of Physical Che- mistry, Vol. 33, 1959, pp. 799-807.

[27]   M. W. Schmidt and M. S. Gordon, “The Construction and Interpretation of MCSCF Wavefunctions,” Annual Review of Physical Chemistry, Vol. 29, 1998, pp. 233- 266. doi:10.1146/annurev.physchem.49.1.233

[28]   B. O. Roos, “The Multiconfiguration SCF Method,” In: S. W. Diercksen, Ed., Methods in Computational Molecular Physics, D. Reidel, Dordrecht, 1983, pp. 161-187.

[29]   J. Olsen, D. L. Yeager and P. P. Jorgensen, “Optimization and Characterization of a MCSCF State,” Advances in Chemical Physics, Vol. 54, 1983, pp. 1-176. doi:10.1002/9780470142783.ch1

[30]   H. -J. Werner, “Matrix Formulated Direct MCSCF and Multiconfiguration Reference CI Methods,” Advances in Chemical Physics, Vol. 69, 1987, pp. 1-62. doi:10.1002/9780470142943.ch1

[31]   R. Shepard, “The MCSCF Method,” Advances in Che- mical Physics, Vol. 69, 1987, pp. 63-200. doi:10.1002/9780470142943.ch2