OJPC  Vol.1 No.3 , November 2011
Electrical and Dielectric Characterization of Na0.5Li0.5Zr2(PO4)3
Abstract: Na0.5Li0.5Zr2(PO4)3has been synthesized by solid state reaction and characterized by thermogravimetry/ differential thermal analyses (TGA/DTA) in the temperature range 300 - 1573 K. X-ray diffraction measure- ments have been carried out to determine the phase of the composition and scanning electron microscopy (SEM) for microstructure evaluation. Impedance spectroscopy at different temperatures (310 - 600 K) and frequencies (300 kHz - 1 GHz) have been carried out and the dielectric relaxation behaviour was determined under the same conditions. A dc conductivity maximum value of 0.25 S/m at 580 K was observed. However, the mixed alkali effect was not observed. The material exhibited relaxation behaviour with a peak in the dielectric permitivity at 469 K. There were no structural transformations observed.
Cite this paper: nullU. Ahmadu, K. Isah, A. Musa and T. Salkus, "Electrical and Dielectric Characterization of Na0.5Li0.5Zr2(PO4)3," Open Journal of Physical Chemistry, Vol. 1 No. 3, 2011, pp. 94-103. doi: 10.4236/ojpc.2011.13013.

[1]   B. Angadi, V. M. Jali, M. T. Lagare, N. S. Kini, A. M. Umarji, R. Kumar, S. K. Arora and D. Kanjilal, “50 MeV Li3+ Irradiation Effects on the Thermal Expansion of Ca1_xSrxZr4P6O24,” Nuclear Instruments and Methods in Physics Research B, Vol. 187, No. 1, 2002, pp. 87-94. doi:10.1016/S0168-583X(01)00847-3

[2]   S. Kormaneni, E. Lenain and R. Roy, “Thermal Expan- sion of NH4Zr2(PO4)3,” Journal of Materials Science Letters, Vol. 5, No. 1, 1986, pp. 1-3. doi:10.1007/BF01671415

[3]   I. W. Donald, B. L. Metcalfe and R. N. J. Taylor, “The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses,” Journal of Materials Science, Vol, 32, No. 22, 1997, pp. 5851-5887. doi:10.1023/A:1018646507438

[4]   N. Anantharamulu, G. Prasad and M. Vithal, “Preparation, Characterization and Conductivity Studies of Li3–2xAl2–x Sbx(PO4)3,” Bulletin of Materials Science, Vol. 31, No. 2, 2008, pp.133-138. doi:10.1007/s12034-008-0023-3

[5]   T. ?alkus, A. Dindune, Z. Kanepe, J. Ronis, A. Ka?eonis and A. E. Orliukas, “Synthesis Structure and Electric Properties of L1+xScxZ2-x(PO4)3(x = 0.1,0.2,0.3),” Lithua- nian Journal of Physics, Vol. 46, 2006, pp. 361-366. doi:10.3952/lithjphys.46314

[6]   H. Kang and N. Cho, “Phase Formation, Sintering Behavior, and Electrical Characteristics of NASICON Com- pounds,” Journal of Materials Science, Vol. 34, No. 20, 1999, pp. 5005-5013. doi:10.1023/A:1004784327302

[7]   F. E. Mouahid, M. Zahir, P. M. Maldonado-Manso, S. Bruque, E. R. Losilla, M. A. G. Aranda, A. Rivera, C. Leona and J. Santamaria, “Na-Li Exchange of Na1+xTi2-x Alx(PO4)3(0.6 ≤ x ≤ 0.9) NASICON Series: A Rietveld and Impedance Study,” Journal of Materials Chemistry, Vol. 11, 2001, pp. 3258-3263. doi:10.1039/b102918p

[8]   K. Oda, S. Takase and Y. Shimizu, “Preparation of High Conductive Lithium Ceramic,” Materials Science Forum, Vol. 544-545, 2007, pp. 1033-1036. doi:10.4028/

[9]   P. S. Tantri, K. Greetha, A. M. Umarji and S. K. Rama- sesha, “Thermal Expansion Behaviour of Barium and Strontium Zirconium Phosphates,” Bulletin of Materials Science, Vol. 23, No. 6, 2000, pp. 491-499. doi:10.1007/BF02903889

[10]   V. I. Petkov, A. I. Orlova, I. G. Trucbach, Y. A. Asabina, V. T. Demarin and V. S. Kurazhkovskaya, “Immobilization of Nuclear Waste Materials Containing Different Alkali Elements in Single-Phase NZP-Based Ceramics,” Czech Journal of Physics, Vol. 53, No. 1, 2003, pp. A639 -A648. doi:10.1007/s10582-003-0082-z

[11]   A. H. Naik, N. V. Thakkar, S. R. Darwatkar, K. D. S. Mudher and V. V. Venagopal, “Microwave Assisted Low Temperature Synthesis of Sodium Zirconium Phosphate (NaZr2(PO4)3),” Journal of Thermal Analysis and Calo- rimetry, Vol. 76, 2004, pp. 707-713.

[12]   A. H. Naik, S. S. Deb, A. B. Chalke, M. K. Saxena, K. L. Ramakumar, V. Venugopal and S. R. Dharwadkar, “Microwave-Assisted Low Temperature Synthesis of So- dium Zirconium Phosphate (NZP) and the Leachability of Some Selected Fission Products Incorporated in Its Struc- ture―A Case Study of Leachability of Caesium,” Journal of Chemical Science, Vol. 122, No. 1, 2010, pp. 71-82. doi:10.1007/s12039-010-0009-8

[13]   H. Aono, “Studies on Li+ Ionic Conducting Solid Elec- trolyte Composed of Nasicon-Type Structure,” Ph.D. Dissertation, Osaka University, Osaka, 1994.

[14]   J. Kawamura, N. Kuwata, K. Hattori and J. Misuzaki, “Ionic Transport in Nanohetergenous Materials,” Reports of the Institute of Fluid Science, Vol. 19, 2007, pp. 1-2.

[15]   J. S. Lee, C. M. Chang, Y. I. Lee, J. H. Lee and S. H. Hong, “Spark Plasma Sintering (SPS) of NASICON Ceramics,” Journal of American Ceramic Society, Vol. 87, No. 2, 2004, pp. 305-307. doi:10.1111/j.1551-2916.2004.00305.x

[16]   E. Kazakevi?ius, A. F. Orliukas, A. L. Ke?ionis, A. L. Jucius, A. Dindune, Z. Kanepe and J. Ronis, “Synthesis and Electrical Properties of Li1+xZr2-2xAlxTix(PO4)3,” Materials Science (Med?iagotyra), Vol. 10, 2004, p. 305.

[17]   P. Khatri, B. Behera, V. Srivanus and R. N. P. Choudhary, Complex Impedance Spectroscopic Properties of Ba3V2 O8 Ceramics,” Research Letters in Materials Science, 2008, p. 3.

[18]   C. J. Leo, G. V. S. Rao and B. V. R. Chowdari, “Fast Ion Conduction in the Li-Analogues of Nasicon, Li1+x [(Ta1-2xGex)Al](PO4)3,” Journal of Materials Chemistry, Vol. 12, No. 6, 2002, pp.1848-1853. doi:10.1039/b110863h

[19]   D. A. Woodcock, P. Lightfoot and R. I. Smith, “Powder Neutron Diffraction Studies of Three Low Thermal Ex- pansion Phases in the NZP Family: K0.5Nb0.5Ti1.5- (PO4)3, Ba0.5Ti2(PO4)3 and Ca0.25Sr0.25-Zr2(PO4)3,” Journal of Materials Chemistry, Vol. 9, No. 10, 1999, pp. 2631-2636. doi:10.1039/a903489g

[20]   A. Ke?ionis, E. Kazakevi?ius, T. ?alkus and A. Orliukas, “Broadband High Frequency Impedance Spectrometer with Working Temperatures up to 1200 K,” Solid State Ion, Vol. 188, 2010, pp. 110-113.

[21]   V. I. Pet’kov, E. A. Asabina, A. V. Markin and N. N. Smirnova, “Synthesis, Characterization and Thermodyna- mic Data of Compounds with NZP Structure,” Journal of Thermal Analysis and Calorimetry, Vol. 91, 2008, pp. 157-158.

[22]   D.-M. Zhu, F. Luo, Z.-L. Xie and W.-C. Zhou, “Phase Formation and Electrical Characteristics of NASICON Ceramics,” Transactions of Nonferrous Metal Society of China, Vol. 17, 2007, pp. s1156-s1159.

[23]   U. Ahmadu, A. O. Musa, S. A. Jonah and N. Rabiu, “Synthesis and Thermal Characterization of NZP Com- pounds Na1-xLixZr2(PO4)3 (x = 0.00-0.75),” Journal of Thermal Analysis and Calorimetry, Vol. 101, 2010, pp. 175-179. doi:10.1007/s10973-010- 0679-y

[24]   C. S. Sunandana and P. S. Kumar, “Theoretical App- roaches to Superionic Conductivity,” Bulletin of Ma- terials Science, Vol. 27, No. 1, 2004, pp. 1-17. doi:10.1007/BF02708477

[25]   J. Bisquert, V. Halpern and F. Henn, “Simple Model for AC Ionic Conduction in Solid,” Journal of Chemical Physics, Vol. 122, No. 15, 2005, pp. 151101-1-151101-4. doi:10.1063/1.1896359

[26]   A. Gosh, “AC Conduction in Iron Bismuthate Glassy Semiconductors,” Physical Review B, Vol. 42, No. 2, 1990, pp. 1388-1393. doi:10.1103/PhysRevB.42.1388

[27]   A. Jarboui, A. Ben Rhaeim, F. Hilel, K. Guidara and M. Gargouri, “NMR Study and Electrical Properties Inves- tigation of Zn2P2O7,” Ionics, Vol. 16, No. 1, 2010, pp. 67- 73. doi:10.1007/s11581-009-0333-5

[28]   E. E. Shaisha, Sh. F. El-Desouki, I. Shaltout and A. A. Bahgat, “Electrical Relaxation in Mixed Alkali Bi2O3- K2O-Li2O-Fe2O3 Glasses,” Journal of Materials Science and Technology, Vol. 22, 2006, pp. 701-707.

[29]   I. Vitioo, “Synthesis, Structure, Conductivity and Ele- ctrode Properties for Some Double Diphosphates, Sili- cates and Lithium Manganese Oxides,” Ph.D. Disser- tation, Institute of Solid State Physics, University of Latvia, Riga, 1999.

[30]   Liu J. J., C.-G. Duan, W.-G. Yin, W. N. Mei, R. W. Smith and J. R. Smith, “Dielectric Permittivity and Electric Modulus in Bi2Ti4O11,” Journal of Chemical Physics, Vol. 119, No. 5, 2003, pp. 2812-2819. doi:10.1063/1.1587685

[31]   M. V. N. D. Sharma, A. V. Sarma and R. B. Rao, “Electrical Characterization and Relaxation Behavior of Lithium-Indium-Phosphate Glasses via Impedance Spec- troscopy,” Turkish Journal of Physics, Vol. 33, 2009, pp. 87-100.

[32]   T. R. Choudhary and A. Basu, “Ac Conductivity and Dielectric Relaxation Studies of Sandstone―A Corre- lation with Its Thermoluminescence,” Journal of Ovonic Research, Vol. 4, 2008. pp. 35-42.