AM  Vol.9 No.9 , September 2018
Reconstruct the Heat Conduction Model with Memory Dependent Derivative
The classical heat conduction equation is derived from the assumption that the temperature increases immediately after heat transfer, but the increase of temperature is a slow process, so the memory-dependent heat conduction model has been reconstructed. Numerical results show that the solution of the initial boundary value problem of the new model is similar to that of the classical heat conduction equation, but its propagation speed is slower than that of the latter. In addition, the propagation speed of the former is also affected by time delay and kernel function.
Cite this paper: Sun, W. and Wang, J. (2018) Reconstruct the Heat Conduction Model with Memory Dependent Derivative. Applied Mathematics, 9, 1072-1080. doi: 10.4236/am.2018.99072.

[1]   Wang, J.L. and Li, H.F. (2011) Surpassing the Fractional Derivative: Concept of the Memory-Dependent Derivative. Computers and Mathematics with Applications, 62, 1562-1567.

[2]   Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2016) Generalized Thermos-Viscoelasticity with Memory-Dependent Derivatives Involving Two Temperatures. Mechanics of Advanced Materials and Structures, 23, 545-553.

[3]   Ezzat, M.A. and El-Bary, A.A. (2016) Thermoelectric MHD with Memory-Dependent Derivative Heat Transfer. International Communications in Heat and Mass Transfer, 75, 270-281.

[4]   Ezzat, M.A. and El-Bary, A.A. (2015) Memory-Dependent Derivatives Theory of Thermo-Viscoelasticity Involving Two-Temperature. Journal of Mechanical Science and Technology, 29, 4273-4279.

[5]   Li, H.F. and Wang, J.L. (2012) Molding the Dynamic System with Memory-Dependent Derivative. 24th Chinese Control and Decision Conference (CCDC) Taiyuan, 23-25 May 2012, 23-25.

[6]   Sun, W.W. and Wang, J.L. (2017) On Numerical Solution of the Memory Dependent Partial Differential Equations. Advances in Applied Mathematics, 6, 637-643. (in Chinese)

[7]   Wang, J.L. and Li, H.F. (2006) The Weighted Periodic Function and Its Properties. Dynamics of Continuous Discrete and Impulsive Systems (Series A-Mathematical Analysis), 13, 1179-1183.