AJPS  Vol.2 No.5 , November 2011
Effect of Vitamins on In Vitro Organogenesis of Plant
Abstract: Vitamins are necessary compounds synthesized and utilized in plants. In tissue culture media, vitamin addition is not always common; since the amount needed by plants is relatively unknown and varies. Vitamins, in combination with other media constituents, have been shown to have direct and indirect effects on callus growth, somatic growth, rooting, and embryonic development. For example, different studies have shown that thiamine is associated with cytokinin and has a role in inducing callus growth and rooting. Moreover, thiamine was essential in facilitating the production of more secondary metabolites such as proteases in pineapple. Both biotin and riboflavin play a role in callus development as well. Specifically, riboflavin exerts different effects on plant rooting either positively and negatively. Vitamin D known to cause uptake of calcium in animal tissue, exerts a similar effect in plants. In addition, vitamin D causes cell elongation and meristematic cell division. Vitamin C, known for its anti-oxidative properties, has also enhanced shoot growth and rooting.
Cite this paper: nullP. Abrahamian and A. Kantharajah, "Effect of Vitamins on In Vitro Organogenesis of Plant," American Journal of Plant Sciences, Vol. 2 No. 5, 2011, pp. 669-674. doi: 10.4236/ajps.2011.25080.

[1]   R. H. Horton, “Coenzymes and Vitamins,” Principles of Biochemistry, Pearson Education International, Upper Saddle River, 2006.

[2]   J. Bonner, “The Role of Vitamins in Plant Development,” Botanical Review, Vol. 3, No. 12, 1937, pp. 616-640. doi:10.1007/BF02872294

[3]   E. F. George, M. A. Hall and G.-J. De Klerk, “The Components of Plant Tissue Culture Media II,” Plant Propagation by Tissue Culture, Springer, Dordrecht, 2008, pp. 115-119.

[4]   A. Goyer, “Thiamine in Plants: Aspects of Its Metabolism and Functions,” Phytochemistry, Vol. 71, No. 14-15, 2010, pp. 1615-1624. doi:10.1016/j.phytochem.2010.06.022

[5]   O. Kursteiner, I. Dupuis and C. Kuhlemeier, “The Pyru- Vate Decarboxylase1 Gene of Arabidopsis Is Required During Anoxia but Not Other Environmental Stresses,” Plant Physiology, Vol. 132, No. 2, 2003, pp. 968-978. doi:10.1104/pp.102.016907

[6]   J. Malamy, P. S. Casas, J. Hennig, A. L. Guo and D. F. Klessig, “Dissection of the Salicylic Acid Signaling Pathway in Tobacco,” Molecular Plant—Microbe Interaction, Vol. 9, No. 6, 1996, pp. 474-482. doi:10.1094/MPMI-9-0474

[7]   I. P. Ahn, S. Kim and Y. H. Lee, “Vitamin B1 Functions as an Activator of Plant Disease Resistance,” Plant Physiology, Vol. 138, No. 3, 2005, pp. 1505-1515. doi:10.1104/pp.104.058693

[8]   M. Tunc-Ozdemir, “Thiamin Confers Enhanced Tolerance to Oxidative Stress in Arabidopsis,” Plant Physiology, Vol. 151, No. 1, 2009, pp. 421-432. doi:10.1104/pp.109.140046

[9]   J. A. Gonzalez-Reyes, F. J. Alcain, J. A. Caler, A. Serrano, F. Cordoba and P. Navas, “Stimulation of Onion Root Elongation by Ascorbate and Ascorbate Free Radical in Allium cepa L,” Protoplasma, Vol. 184, 1995, pp. 31-35. doi:10.1007/BF01276898

[10]   T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures,” Physiologia Plantarum, Vol. 15, No. 3, 1962, pp. 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x

[11]   S. Ray, “On the Nature of the Precursor of the Vitamin C in the Vegetable Kingdom. I. Vitamin C in the Growing Pea Seedling,” Biochemical Journal, Vol. 28, No. 3, 1934, pp. 996-1003.

[12]   A. Habib and D. J. Donnelly, “Vitamin Ds Improve Calcium Uptake in Micropropagated Potato Plantlets,” Acta Horticulturae, Vol. 619, 2003, pp. 263-269.

[13]   O. Gamborg, R. Miller and K. Ojima, “Nutrient Require- ments of Suspension Cultures of Soybean Root Cells,” Experimental Cell Research, Vol. 50, No. 1, 1968, pp. 151-158. doi:10.1016/0014-4827(68)90403-5

[14]   T. Eriksson, “Studies on the Growth Requirements and Growth Measurements of Cell Cultures of Haplopappus gracilis,” Physiologia Plantarum, Vol. 18, No. 4, 1965, pp. 976-993. doi:10.1111/j.1399-3054.1965.tb06994.x

[15]   R. T. Polikarpochkina, K. Z. Gamburg and E. E. Khavin, “Cell-Suspension Culture of Maize (Zea mays L.),” Zeits- chrift fr Pflanzenphysiologie, Vol. 95, No. 1, 1979, pp. 57-67.

[16]   J. Digby and F. Skoog, “Cytokinin Activation of Thia- mine Biosynthesis in Tobacco Callus Cultures,” Plant Physiology, Vol. 41, No. 4, 1966, pp. 647-652. doi:10.1104/pp.41.4.647

[17]   E. M. Linsmaier-Bednar and F. Skoog, “Thiamine Requi- rement in Relation to Cytokinin in ‘normal’ and ‘mutant’ Strains of Tobacco Callus,” Planta, Vol. 72, No. 2, 1966, pp. 146-154. doi:10.1007/BF00387478

[18]   D. E. Dravnieks, F. Skoog and R. H. Burris, “Cytokinin Activation of De Novo Thiamine Biosynthesis in To- bacco Callus Cultures,” Plant Physiology, Vol. 44, No. 6, 1969, pp. 866-870. doi:10.1104/pp.44.6.866

[19]   J. M. Al-Khayri, “Optimization of Biotin and Thiamine Requirements for Somatic Embryogenesis of Date Palm (Phoenix dactylifera L.),” In Vitro Cellular & Develop- mental Biology—Plant, Vol. 37, No. 4, 2001, pp. 453- 456. doi:10.1007/s11627-001-0079-x

[20]   R. A. Drew and N. G. Smith, “Growth of Apical and Lateral Buds of Papaya (Carica papaya L.) as Affected by Nutritional and Hormonal Factors,” Journal of Horticultural Science, Vol. 61, No. 1, 1986, pp. 535-543.

[21]   M. C. De Pinto, D. Francis and L. Gara, “The Redox State of the Ascorbate-dehydroascorbate Pair as a Speci- fic Sensor of Cell Division in Tobacco BY-2 Cells,” Pro- toplasma, Vol. 209, No. 1-2, 1999, pp. 90-97. doi:10.1007/BF01415704

[22]   R. Boland, L. Talmon, M. Vega and B. Mujica, “Cyto- histological Studies on the Action of Vitamin D3 and Stigmasterol on Phaseolus Vulgaris Roots Growing in Vitro,” Plant Science, Vol. 59, No. 2, 1989, pp. 183-190. doi:10.1016/0168-9452(89)90136-2

[23]   K. Dimassi, C. Antonopoulou, I. Therios, C. Chatzi- ssavvidis and V. Tsirakoglou, “Inhibitory Effects of Ri- boflavin (Vitamin B) on the in Vitro Rooting and Nutrient Concentration of Explants of Peach Rootstock GF 677 (×),” Scientia Horticulturae, Vol. 106, No. 2, 2005, pp. 268-272.

[24]   W. M. Van der Krieken, H. Breteler, M. H. M. Visser and W. Jordi, “Effect of light and riboflavin on indolebutyric acid-induced root formation on apple in vitro,” Physiolo- gia Plantarum, Vol. 85, No. 4, 1992, pp. 589-594. doi:10.1034/j.1399-3054.1992.850405.x

[25]   H. Trindade and M. S. Pais, “In Vitro Studies on Eucalyptus Globulus Rooting Ability,” In Vitro Cellular & Developmental Biology—Plant, Vol. 33, No. 1, 1997, pp. 1-5. doi:10.1007/s11627-997-0032-8

[26]   R. A. Drew, J. A. McComb and J. A. Considine, “Rhizo- genesis and Root Growth of Carica Papaya L. in Vitro in Relation to Auxin Sensitive Phases and Use of Ribofla- vin,” Plant Cell, Tissue and Organ Culture, Vol. 33, No. 1, 1993, pp. 1-7. doi:10.1007/BF01997591

[27]   R. A. Fossard, A. Myint and E. C. M. Lee, “A Broad Spectrum Tissue Culture Experiment with Tobacco (Nicotiana tabacum L.) Pith Tissue Callus,” Physiologia Plantarum, Vol. 31, No. 2, 1974, pp. 125-130. doi:10.1111/j.1399-3054.1974.tb03116.x

[28]   P. P. Chee, “Stimulation of Adventitious Rooting of Taxus Species by Thiamine,” Plant Cell Reports, Vol. 14, No. 12, 1995, pp. 753-757. doi:10.1007/BF00232916

[29]   J. J. Le Roux and J. Van Staden, “Micropropagation and Tissue Culture of Eucalyptus—A Review,” Tree Physio- logy, Vol. 9, No. 4, 1991, pp. 435-477.

[30]   U. B. Barwale, H. R. Kerns and J. M. Widholm, “Plant Regeneration from Callus Cultures of Several Soybean Genotypes via Embryogenesis and Organogenesis,” Plan- ta, Vol. 167, No. 4, 1986, pp. 473-481. doi:10.1007/BF00391223

[31]   Y. Asano, H. Katsumoto, C. Inokuma, S. Kaneko, Y. Ito and A. Fujiie, “Cytokinin and Thiamine Requirements and Stimulative Effects of Riboflavin and Alpha-Ke- toglutaric Acid on Embryogenic Callus Induction from the Seeds of Zoysia japonica Steud,” Journal of Plant Physiology, Vol. 149, No. 3-4, 1996, pp. 413-417.

[32]   A. Pérez, L. Nápoles, C. Carvajal, M. Hernandez and J. C. Lorenzo, “Effect of Sucrose, Inorganic Salts, Inositol, and Thiamine on Protease Excretion during Pineapple Culture in Temporary Immersion Bioreactors,” In Vitro Cellular & Developmental Biology—Plant, Vol. 40, No. 3, 2004, pp. 311-316. doi:10.1079/IVP2004529

[33]   J. R. Gorst, M. Slaytor and R. A. De Fossard, “The Effect of Indole-3-Butyric Acid and Riboflavin on the Morpho- genesis of Adventitious Roots of Eucalyptus ficifolia F. Muell. Grown in Vitro,” Journal of Experimental Botany, Vol. 34, No. 11, 1983, pp. 1503-1515. doi:10.1093/jxb/34.11.1503

[34]   R. A. Drew, B. W. Simpson and W. J. Osborne, “Degra- dation of Exogenous Indole-3-Butyric Acid and Ribofla- vin and Their Influence on Rooting Response of Papaya in Vitro,” Plant Cell, Tissue and Organ Culture, Vol. 26, No. 1, 1991, pp. 29-34. doi:10.1007/BF00116606

[35]   R. W. Joy, K. R. Patel and T. A. Thorpe, “Ascorbic Acid Enhancement of Organogenesis in Tobacco Callus,” Plant Cell, Tissue and Organ Culture, Vol. 13, No. 3, 1988, pp. 219-228. doi:10.1007/BF00043670

[36]   S. Roest and G. Bokelmann, “Vegetative Propagation of Chrysanthemum morifolium Ram. in Vitro,” Scientia Horticulturae, Vol. 3, No. 4, 1975, pp. 317-330. doi:10.1016/0304-4238(75)90046-1

[37]   J. P. Bourgin and J. P. Nitsch, “Obtention de Nicotiana Haplo?des à Partir d’étamines Cultivées in Vitro. (Produc- tion of Haploid Nicotiana from Excised Stamen),” Annales de Physiologie Ve?ge?tale, Vol. 9, 1967, pp. 377-382.

[38]   T. Welander, “In Vitro Organogenesis in Explants from Different Cultivars of Begonia x Hiemalis,” Physiologia Plantarum, Vol. 41, No. 2, 1977, pp. 142-145. doi:10.1111/j.1399-3054.1977.tb05546.x

[39]   U. Soczek and M. Hempel, “The Influence of Some Organic Medium Compounds on Multiplication of Gerbera in Vitro,” Acta Horticulturae, Vol. 226, 1988, pp. 643- 646.

[40]   T. Murashige, M. Serpa and J. B. Jones, “Clonal Multiplication of Gerbera through Tissue Culture,” Horticulture Science, Vol. 9, No. 3, 1974, pp. 175-180.

[41]   K. Ohira, M. Ikeda and K. Ojima, “Thiamine Requirements of Various Plant Cells in Suspension Culture,” Plant Cell Physiology, Vol. 17, No. 3, 1976, pp. 583-588.