AS  Vol.9 No.9 , September 2018
Effects of Organic and Chemical Agriculture Systems on Arbuscular Mycorrhizal Fungi and Green Tomato Production in Calakmul, Mexico
Abstract: Organic agriculture is increasingly used as an alternative to conventional agriculture due to its positive impact on the health of ecosystems and agroecosystems. However, the outcome of organic agriculture in terms of the production of various crops remains uncertain due to the influence of many variables, rising questions about its advantages over conventional agriculture. This study assessed the impacts of organic agricultural system on arbuscular mycorrhizal (AM) fungi diversity in soil and green tomato (Physalis ixocarpa Brot. ex Horn) crop production. A field experiment was conducted using a random block design with five repetitions of the following treatments: a) Control (no fertilization, NF); b) Vermicompost use (OTV); c) OTV with vermicompost leaching (OTH); and d) Inorganic fertilization (CST). Throughout the crop cycle, soil samples were analyzed chemically, the relative growth rate (RGR) of the plants was measured, and the colonization and diversity of AM fungi were quantified in roots and soil; finally, above-ground, root biomass, and fruit production were measured. Organic fertilization (OTV, OTH) increased (p < 0.05) RGR (10.47 cm OTV), AM colonization (21.80% on OTV and 20.95% on OTH) and diversity (21 species on OTV and 28 species on OTH), compared to CST treatment (8.18 cm on RGR; 15.17% AM colonization, and 11 species). Some AM species were uniquely associated with organic matter, phosphorous, cation exchange capacity and bulk density of soil on the organic system; however, biomass production and fruit yield did not differ (p > 0.05). It is concluded that organic agriculture management is essential to promote a greater AM fungi diversity and fungi root colonization. Plant-AM fungi interaction increases growth rates and it allows a similar tomato production compared with conventional agriculture.
Cite this paper: Cruz-Koizumi, Y. , Alayón-Gamboa, J. , Morón-Ríos, A. , Castellanos-Albores, J. , Aguilar-Chama, A. and Guevara, R. (2018) Effects of Organic and Chemical Agriculture Systems on Arbuscular Mycorrhizal Fungi and Green Tomato Production in Calakmul, Mexico. Agricultural Sciences, 9, 1145-1167. doi: 10.4236/as.2018.99080.

[1]   Patil, S., Reidsma, P., Shah, P., Purushothaman, S. and Wolf, J. (2012) Comparing Conventional and Organic Agriculture in Karnataka, India: Where and When Can Organic Farming Be Sustainable? Land Use Policy, 37, 40-51.

[2]   Te Pas, C.M. and Rees, R.M. (2014) Analysis of Differences in Productivity, Profitability and Soil Fertility between Organic and Conventional Cropping Systems in the Tropics and Sub-Tropics. Journal of Integrative Agriculture, 13, 2299-2310.

[3]   Arnhold, S., Lindner, S., Lee, B., Martin, E., Kettering, J., Nguyen, T.T., et al. (2014) Conventional and Organic Farming: Soil Erosion and Conservation Potential for Row Crop Cultivation. Geoderma, 219-220, 89-105.

[4]   Khan, K., Pankaj, U., Verma, S.K., Gupta, A.K., Singh, R.P. and Verma, R.K. (2015) Bio-Inoculants and Vermicompost Influence on Yield, Quality of Andrographis paniculata and Soil Properties. Industrial Crops and Products, 70, 404-409.

[5]   González-Rosales, G., Nieto, A., Murillo-Amador, B., Villavicencio, E., Hernández-Medina, J. and Guerrero-Medrano, Z. (2012) Guía técnica para la producción de lombricomposta. Centro de Investigaciones Biológicas del Noroeste SC, editor. Baja California Sur, México, 153 p.

[6]   Doan, T.T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J.-L. and Jouquet, P. (2015) Impact of Compost, Vermicompost and Biochar on Soil Fertility, Maize Yield and Soil Erosion in Northern Vietnam: A Three Year Mesocosm Experiment. Science of the Total Environment, 514, 147-154.

[7]   Alayón-Gamboa, J. (2010) Los huertos familiares en Calakmul: Diversidad y Contribución. FomixCampeche, 4, 7-11.

[8]   Gianinazzi, S., Gollotte, A., Binet, M.-N., van Tuinen, D., Redecker, D. and Wipf, D. (2010) Agroecology: The Key Role of Arbuscular Mycorrhizas in Ecosystem Services. Mycorrhiza, 20, 519-530.

[9]   Mbuthia, L.W., Acosta-Martínez, V., DeBryun, J., Schaeffer, S., Tyler, D., Odoi, E., et al. (2015) Long Term Tillage, Cover Crop and Fertilization Effects on Microbial Community Structure, Activity: Implications for Soil Quality. Soil Biology and Biochemistry, 89, 24-34.

[10]   Qin, H., Lu, K., Strong, P.J., Xu, Q., Wu, Q., Xu, Z., et al. (2015) Long-Term Fertilizer Application Effects on the Soil, Root Arbuscular Mycorrhizal Fungi and Community Composition in Rotation Agriculture. Applied Soil Ecology, 89, 35-43.

[11]   Pérez-Salicrup, D. (2004) Forest Types and Their Implications. In: Turner II, B.L., Geoghegan, J. and Foster, D.R., Eds., Integrated Land-Change Science and Tropical Deforestation in the Southern Yucatán Final frontiers, Oxford University Press, Oxford, 63-80.

[12]   Turner, B.L.I., Cortina-Villar, S., Foster, D., Geoghegan, J. and Keys, E. (2001) Deforestation in the Southern Yucatán Peninsular Region: An Integrative Approach. Forest Ecology and Management, 154, 343-370.

[13]   INE (1999) Programa de Manejo de la Reserva de la Biosfera Calakmul. México DF.

[14]   CONAGUA (2015) Reporte del Clima en México. Delegación Miguel Hidalgo, México DF.

[15]   Morón-Ríos, A. and Alayón-Gamboa, J. (2014) Productividad del cultivo de chile jalapeño (Capsicum anuum L.) con manejo orgánico o convencional en Calakmul, Campeche, México. Avances en Investigación Agropecuari, 18, 35-40.

[16]   Gómez, K. and Gómez, A. (1983) Statistical Procedures for Agricultural Research. 2nd Edition, John Wiley & Sons, Hoboken, 630 p.

[17]   Gûemes-Guillen, M.J., Palacios-álvarez, A., Ramírez-Rojas, S., García-Pérez, F., Salazar-Pedroza, A. and Inoue, K. (2001) Guía para cultivar tomate de cáscara en el estado de morelos. INIFAP Centro de investigación regional del centro campo experimental “Zacatepec” Zacatepec, Morelos, 19 p.

[18]   Moreira, F., Huising, E.J. and Bignell, D.E. (2012) Manual de biología de suelos tropicales. Instituto Nacional de Ecología, México, 337 p.

[19]   Vega-Frutis, R. and Guevara, R. (2009) Different Arbuscular Mycorrhizal Interactions in Male and Female Plants of Wild Carica papaya L. Plant Soil, 322, 65-76.

[20]   Izadi, H., Kamgar, S., Raufat, M. and Samsami, S. (2014) Mass and Volume Modeling of Tomato Based on Physical Characteristics. Scientific Journal of Crop Science, 3, 1-8.

[21]   Villar, R., Ruiz-Robleto, J., Quero, J.L., Poorter, H., Valladares, F. and Marañón, T. (2008) Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In: Egraf, S.A., Ed., Ecología del bosque mediterráneo en un mundo cambiante, Ministerio de Medio Ambiente, España, 193-230.

[22]   Torres-Degró, A. (2011) Tasas de crecimiento poblacional (r): Una mirada desde el modelo matemático lineal, geométrico y exponencial. CIDE Digit, 2, 142-160.
Torres Degro-Tasa crecimiento poblacional.pdf

[23]   Salgado-García, S., Palma-López, D., Lagunes-Espinoza, J. and Castelán-Estrada, M. (2006) Manual para el muestreo de suelos plantas y aguas e interpretación de análisis. Colegio de Postgraduados, Campus Tabasco-ISPROTAB. H. Cárdenas, Tabasco, 90 p.

[24]   R Version 3.12. (2014) “Pumpkin Helmet”. Package Agricolae: Statistical Procedures for Agricultural Research y Copyright (C) The R Foundation for Statistical.

[25]   Carles M. Cuadras (2014) Nuevos métodos de análisis multivariante. Carles M. Cuadras, Barcelona, 304 p.

[26]   Oksanen, A.J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., et al. (2017) Package “Vegan” Community Ecology.

[27]   Revelle, M.W. (2011) Package “Psych”. 1-250.

[28]   Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-bovy, G., Ellison, S., et al. (2016) Package “Car”. 167.

[29]   Zuur, A.F., Ieno, E.N. and Elphick, C.S. (2009) A Protocol for Data Exploration to Avoid Common Statistical Problems. Methods in Ecology and Evolution, 1, 3-14.

[30]   Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L. and Grace, P. (2013) Conservation Agriculture and Ecosystem Services: An Overview. Agriculture, Ecosystems & Environment, 187, 87-105.

[31]   Cardoso, I.M. and Kuyper, T.W. (2006) Mycorrhizas and Tropical Soil Fertility. Agriculture, Ecosystems & Environment, 116, 72-84.

[32]   Douds, D.D. and Millner, P.D. (1999) Biodiversity of Arbuscular Mycorrhizal Fungi in Agroecosystems. Agriculture, Ecosystems & Environment, 74, 77-93.

[33]   Gosling, P., Hodge, A., Goodlass, G. and Bending, G. (2006) Arbuscular Mycorrhizal Fungi and Organic Farming. Agriculture, Ecosystems & Environment, 113, 17-35.

[34]   Verbruggen, E., Röling, W., Gamper, H., Kowalchuk, G., Verhoef, H. and van der Heijden, M. (2010) Positive Effects of Organic Farming on Below-Ground Mutualists: Large-Scale Comparison of Mycorrhizal Fungal Communities in Agricultural Soils. New Phytologist, 186, 968-979.

[35]   Lazcano, C., Gómez-Brandón, M., Revilla, P. and Domínguez, J. (2013) Short-Term Effects of Organic and Inorganic Fertilizers on Soil Microbial Community Structure and Function. Biology and Fertility of Soils, 49, 723-733.

[36]   Dai, M., Hamel, C., Bainard, L.D., Arnaud, M.St., Grant, C.A., Lupwayi, N.Z., et al. (2014) Negative and Positive Contributions of Arbuscular Mycorrhizal Fungal Taxa to Wheat Production and Nutrient Uptake Efficiency in Organic and Conventional Systems in the Canadian Prairie. Soil Biology and Biochemistry, 74, 156-166.

[37]   Schneider, K.D., Lynch, D.H., Dunfield, K., Khosla, K., Jansa, J. and Voroney, R.P. (2015) Farm System Management Affects Community Structure of Arbuscular Mycorrhizal Fungi. Applied Soil Ecology, 96, 192-200.

[38]   Druille, M., Omacini, M., Golluscio, R. and Cabello, M.N. (2013) Arbuscular Mycorrhizal Fungi Are Directly and Indirectly Affected by Glyphosate Application. Applied Soil Ecology, 72, 143-149.

[39]   van Diepen, L.T.A., Entwistle, E.M. and Zak, D.R. (2013) Chronic Nitrogen Deposition and the Composition of Active Arbuscular Mycorrhizal Fungi. Applied Soil Ecology, 72, 62-68.

[40]   Hart, M.M. and Reader, R.J. (2002) Taxonomic Basis for Variation in the Colonization Strategy of Arbuscular Mycorrhizal Fungi. New Phytologist, 153, 335-344.

[41]   Chagnon, P.-L., Bradley, R.L., Maherali, H. and Klironomos, J.N. (2013) A Trait-Based Framework to Understand Life History of Mycorrhizal Fungi. Trends in Plant Science, 18, 484-491.

[42]   Jefwa, J.M., Okoth, S., Wachira, P., Karanja, N., Kahindi, J., Njuguini, S., et al. (2012) Impact of Land Use Types and Farming Practices on Occurrence of Arbuscular Mycorrhizal Fungi (AMF) Taita-Taveta District in Kenya. Agriculture, Ecosystems & Environment, 157, 32-39.

[43]   Meyer, A.H., Wooldridge, J. and Dames, J.F. (2015) Effect of Conventional and Organic Orchard Floor Management Practices on Arbuscular Mycorrhizal Fungi in a “Cripp’s Pink”/M7 Apple Orchard Soil. Agriculture, Ecosystems & Environment, 213, 114-120.

[44]   Cavender, N.D., Atiyeh, R.M. and Knee, M. (2003) Vermicompost Stimulates Mycorrhizal Colonization of Roots of Sorghum Bicolor at the Expense of Plant Growth. Pedobiologia, 47, 85-89.

[45]   Avio, L., Castaldini, M., Fabiani, A., Bedini, S., Sbrana, C., Turrini, A., et al. (2013) Impact of Nitrogen Fertilization and Soil Tillage on Arbuscular Mycorrhizal Fungal Communities in a Mediterranean Agroecosystem. Soil Biology and Biochemistry, 67, 285-294.

[46]   Gryndler, M., Hršelová, H., Cajthaml, T., Havránková, M., &RCARON;ezáčová, V., Gryndlerová, H., et al. (2009) Influence of Soil Organic Matter Decomposition on Arbuscular Mycorrhizal Fungi in Terms of Asymbiotic Hyphal Growth and Root Colonization. Mycorrhiza, 19, 255-266.

[47]   Hassan, S.E.D., Liu, A., Bittman, S., Forge, T.A., Hunt, D.E., Hijri, M., et al. (2013) Impact of 12-Year Field Treatments with Organic and Inorganic Fertilizers on Crop Productivity and Mycorrhizal Community Structure. Biology and Fertility of Soils, 49, 1109-1121.

[48]   Campiglia, E., Mancinelli, R., De Stefanis, E., Pucciarmati, S. and Radicetti, E. (2015) The Long-Term Effects of Conventional and Organic Cropping Systems, Tillage Managements and Weather Conditions on Yield and Grain Quality of Durum Wheat (Triticum durum Desf.) in the Mediterranean Environment of Central Italy. Field Crops Research, 176, 34-44.

[49]   Singh, R., Sharma, R.R., Kumar, S., Gupta, R.K. and Patil, R.T. (2008) Vermicompost Substitution Influences Growth, Physiological Disorders, Fruit Yield and Quality of Strawberry (Fragaria × ananassa Duch.). Bioresource Technology, 99, 8507-8511.

[50]   Singh, R., Gupta, R.K., Patil, R.T., Sharma, R.R., Asrey, R., Kumar, A., et al. (2010) Sequential Foliar Application of Vermicompost Leachates Improves Marketable Fruit Yield and Quality of Strawberry (Fragaria × ananassa Duch.). Scientia Horticulturae, 124, 34-39.

[51]   Seufert, V., Ramankutty, N. and Foley, J. (2012) Comparing the Yields of Organic and Conventional Agriculture. Nature, 485, 229-332.

[52]   Carrubba, A. (2014) Organic and Chemical N Fertilization on Coriander (Coriandrum sativum L.) in a Mediterranean Environment. Industrial Crops and Products, 57, 174-187.

[53]   Koohafkan, P., Altieri, M. and Gimenez, E.H. (2012) Green Agriculture: Foundations for Biodiverse, Resilient and Productive Agricultural Systems. International Journal of Agricultural Sustainability, 10, 61-75.

[54]   Crittenden, S.J., Poot, N., Heinen, M., van Balen, D.J.M. and Pulleman, M.M. (2015) Soil Physical Quality in Contrasting Tillage Systems in Organic and Conventional Farming. Soil & Tillage Research, 154, 136-144.

[55]   Gutiérrez-Miceli, F.A., García-Gómez, R.C., Rincón Rosales, R., Abud-Archila, M., Cruz, M.J.G., et al. (2008) Formulation of a Liquid Fertilizer for Sorghum (Sorghum bicolor (L.) Moench) Using Vermicompost Leachate. Bioresource Technology, 99, 6174-6180.

[56]   Yogev, A., Raviv, M., Kritzman, G., Hadar, Y., Cohen, R., Kirshner, B., et al. (2009) Suppression of Bacterial Canker of Tomato by Composts. Crop Protection, 28, 97-103.

[57]   Arancon, N.Q., Edwards, C.A., Babenko, A., Cannon, J., Galvis, P. and Metzger, J.D. (2008) Influences of Vermicomposts, Produced by Earthworms and Microorganisms from Cattle Manure, Food Waste and Paper Waste, on the Germination, Growth and Flowering of Petunias in the Greenhouse. Applied Soil Ecology, 39, 91-99.

[58]   Baum, C., El-Tohamy, W. and Gruda, N. (2015) Increasing the Productivity and Product Quality of Vegetable Crops Using Arbuscular Mycorrhizal Fungi: A Review. Scientia Horticulturae, 187, 131-141.

[59]   Quinton, J.N., Govers, G., Van Oost, K. and Bardgett, R.D. (2010) The Impact of Agricultural Soil Erosion on Biogeochemical Cycling. Nature Geoscience, 3, 311-314.

[60]   D’Hose, T., Cougnon, M., De Vliegher, A., Vandecasteele, B., Viaene, N., Cornelis, W., et al. (2014) The Positive Relationship between Soil Quality and Crop Production: A Case Study on the Effect of Farm Compost Application. Applied Soil Ecology, 75, 189-198.

[61]   Tian, W., Wang, L., Li, Y., Zhuang, K., Li, G., Zhang, J., et al. (2015) Responses of Microbial Activity, Abundance, and Community in Wheat Soil after Three Years of Heavy Fertilization with Manure-Based Compost and Inorganic Nitrogen. Agriculture, Ecosystems & Environment, 213, 219-227.

[62]   Bedada, W., Karltun, E., Lemenih, M. and Tolera, M. (2014) Long-Term Addition of Compost and NP Fertilizer Increases Crop Yield and Improves Soil Quality in Experiments on Smallholder Farms. Agriculture, Ecosystems & Environment, 195, 193-201.